Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 518
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Biol Reprod ; 110(5): 895-907, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38267362

RESUMEN

It is known that the oocyte has a limited capacity to acquire and metabolize glucose, and it must rely on cumulus cells (CCs) to take up glucose and produce pyruvate for use to produce ATP through oxidative phosphorylation. We therefore propose that miRNAs might regulate glucose metabolism (GM) in CCs and might be used as markers for oocyte quality assessment. Here, mouse CC models with impaired glycolysis or pentose phosphate pathway (PPP) were established, and miRNAs targeting the key enzymes in glycolysis/PPP were predicted using the miRNA target prediction databases. Expression of the predicted miRNAs was compared between CCs with normal and impaired glycolysis/PPP to identify candidate miRNAs. Function of the candidate miRNAs was validated by transfecting CCs or cumulus-oocyte-complexes (COCs) with miRNA inhibitors and observing effects on glucose metabolites of CCs and on competence of oocytes. The results validated that miR-23b-3p, let-7b-5p, 34b-5p and 145a-5p inhibited glycolysis, and miR-24-3p, 3078-3p,183-5p and 7001-5p inhibited PPP of CCs. Our observation using a more physiologically relevant model (intact cultured COCs) further validated the four glycolysis-targeting miRNAs we identified. Furthermore, miR-let-7b-5p, 34b-5p and 145a-5p may also inhibit PPP, as they decreased the production of glucose-6-phosphate. In conclusion, miRNAs play critical roles in GM of CCs and may be used as markers for oocyte quality assessment. Summary sentence:  We identified and validated eight new miRNAs that inhibit glycolysis and/or pentose phosphate pathways in cumulus cells (CCs) suggesting that miRNAs play critical roles in glucose metabolism of CCs and may be used for oocyte quality markers.


Asunto(s)
Células del Cúmulo , Glucosa , Glucólisis , MicroARNs , Animales , Células del Cúmulo/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Ratones , Glucosa/metabolismo , Femenino , Glucólisis/fisiología , Vía de Pentosa Fosfato , Oocitos/metabolismo
2.
Reproduction ; 168(3)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949488

RESUMEN

In brief: Genes expressed in cumulus cells might be used as markers for competent oocytes/embryos. This study identified and validated a new group of cumulus expansion and/or apoptosis-regulating genes, which may be used for selection of quality oocytes/embryos. Abstract: Studies on the mechanisms behind cumulus expansion and cumulus cell (CC) apoptosis are essential for understanding the mechanisms for oocyte maturation. Genes expressed in CCs might be used as markers for competent oocytes and/or embryos. In this study, both in vitro (IVT) and in vivo (IVO) mouse oocyte models with significant difference in cumulus expansion and CC apoptosis were used to identify and validate new genes regulating cumulus expansion and CC apoptosis of mouse oocytes. We first performed mRNA sequencing and bioinformatic analysis using the IVT oocyte model to identify candidate genes. We then analyzed functions of the candidate genes by RNAi or gene overexpression to select the candidate cumulus expansion and CC apoptosis-regulating genes. Finally, we validated the cumulus expansion and CC apoptosis-regulating genes using the IVO oocyte model. The results showed that while Spp1, Sdc1, Ldlr, Ezr and Mmp2 promoted, Bmp2, Angpt2, Edn1, Itgb8, Cxcl10 and Agt inhibited cumulus expansion. Furthermore, Spp1, Sdc1 and Ldlr inhibited CC apoptosis. In conclusion, by using both IVT and IVO oocyte models, we have identified and validated a new group of cumulus expansion and/or apoptosis-regulating genes, which may be used for selection of quality oocytes/embryos and for elucidating the molecular mechanisms behind oocyte maturation.


Asunto(s)
Apoptosis , Células del Cúmulo , Perfilación de la Expresión Génica , Oocitos , Animales , Células del Cúmulo/metabolismo , Oocitos/metabolismo , Oocitos/fisiología , Ratones , Femenino , Técnicas de Maduración In Vitro de los Oocitos , Sindecano-1/metabolismo , Sindecano-1/genética , Oogénesis/genética , Osteopontina
3.
J Reprod Dev ; 70(4): 238-246, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38910127

RESUMEN

Understanding how stress hormones induce apoptosis in oviductal epithelial cells (OECs) and mural granulosa cells (MGCs) can reveal the mechanisms by which female stress impairs embryonic development and oocyte competence. A recent study showed that tissue plasminogen activator (tPA) ameliorates corticosterone-induced apoptosis in MGCs and OECs by acting on its receptors low-density lipoprotein receptor-related protein 1 (LRP1) and Annexin A2 (ANXA2), respectively. However, whether tPA is involved in corticotropin-releasing hormone (CRH)-induced apoptosis and whether it uses the same or different receptors to inhibit apoptosis induced by different hormones in the same cell type remains unknown. This study showed that CRH triggered apoptosis in both OECs and MGCs and significantly downregulated tPA expression. Moreover, tPA inhibits CRH-induced apoptosis by acting on ANXA2 in both OECs and MGCs. While ANXA2 inhibits apoptosis via phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling, LRP1 reduces apoptosis via mitogen-activated protein kinase (MAPK) signaling. Thus, tPA used the same receptor to inhibit CRH-induced apoptosis in both OECs and MGCs, however used different receptors to inhibit corticosterone-induced apoptosis in MGCs and OECs. These data helps understand the mechanism by which female stress impairs embryo/oocyte competence and proapoptotic factors trigger apoptosis in different cell types.


Asunto(s)
Apoptosis , Hormona Liberadora de Corticotropina , Células Epiteliales , Células de la Granulosa , Activador de Tejido Plasminógeno , Animales , Femenino , Apoptosis/efectos de los fármacos , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Ratones , Activador de Tejido Plasminógeno/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Hormona Liberadora de Corticotropina/metabolismo , Transducción de Señal/efectos de los fármacos , Oviductos/metabolismo , Oviductos/efectos de los fármacos , Anexina A2/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Trompas Uterinas/metabolismo , Trompas Uterinas/efectos de los fármacos
4.
BMC Public Health ; 24(1): 290, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267877

RESUMEN

PURPOSE: The adverse health consequences of premarital sex and childhood sexual abuse (CSA) are both global public health problems. Based on a random sample of college students from a Chinese city, this study investigated the relationship between CSA severity and premarital sex among students, focusing on sex differences. METHODS: A total of 2722 college students from 4 schools in Luzhou were recruited by multistage random sampling. Self-administered questionnaires were used to measure CSA experiences and premarital sex. Binary logistic regression analyses were conducted to analyse the relationship between CSA and premarital sex. RESULTS: The prevalence of CSA was 9.39%, and that of mild, moderate and severe CSA was 4.04%, 2.90% and 2.46%, respectively. The premarital sex reporting rate was 22.42%. After adjusting for confounding variables, CSA was positively associated with premarital sex. Notably, a cumulative effect of CSA on premarital sex was observed among students. Further stratification analyses showed that males who experienced CSA had a higher premarital sex rate than females, and this sex difference was also observed among students with different CSA severities. CONCLUSION: CSA and its severity were associated with premarital sex among college students. Furthermore, this association was stronger for males than females. Therefore, it is important to emphasize CSA prevention, especially for boys. These findings can promote understanding of the effects of CSA on premarital sex, and CSA prevention and intervention strategies should consider CSA severity and sex differences.


Asunto(s)
Abuso Sexual Infantil , Caracteres Sexuales , Conducta Sexual , Femenino , Humanos , Masculino , China/epidemiología , Estudiantes , Pueblos del Este de Asia
5.
Theriogenology ; 220: 84-95, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490113

RESUMEN

Understanding the mechanisms for oocyte maturation and optimizing the protocols for in vitro maturation (IVM) are greatly important for improving developmental potential of IVM oocytes. The miRNAs expressed in cumulus cells (CCs) play important roles in oocyte maturation and may be used as markers for selection of competent oocytes/embryos. Although a recent study from our group identified several new CCs-expressed miRNAs that regulate cumulus expansion (CE) and CC apoptosis (CCA) in mouse oocytes, validation of these findings and further investigation of mechanisms of action in other model species was essential before wider applications. By using both in vitro and in vivo pig oocyte models with significant differences in CE, CCA and developmental potential, the present study validated that miR-149 and miR-31 improved CE and developmental potential while suppressing CCA of pig oocytes. We demonstrated that miR-149 and miR-31 targeted SMAD family member 6 (SMAD6) and transforming growth factor ß2 (TGFB2), respectively, in the transforming growth factor-ß (TGF-ß) signaling. Furthermore, both miR-149 and miR-31 increased CE and decreased CCA via activating SMAD family member 2 (SMAD2) and increasing the expression of SMAD2 and SMAD family member 4. In conclusion, the present results show that miR-149 and miR-31 improved CE and developmental potential while suppressing CCA of pig oocytes by activating the TGF-ß signaling, suggesting that they might be used as markers for pig oocyte quality.


Asunto(s)
Células del Cúmulo , Técnicas de Maduración In Vitro de los Oocitos , MicroARNs , Oocitos , Animales , Femenino , Células del Cúmulo/fisiología , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/métodos , MicroARNs/genética , MicroARNs/metabolismo , Oocitos/fisiología , Porcinos , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/metabolismo
6.
Cells ; 13(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38727294

RESUMEN

Information on long-term effects of postovulatory oocyte aging (POA) on offspring is limited. Whether POA affects offspring by causing oxidative stress (OS) and mitochondrial damage is unknown. Here, in vivo-aged (IVA) mouse oocytes were collected 9 h after ovulation, while in vitro-aged (ITA) oocytes were obtained by culturing freshly ovulated oocytes for 9 h in media with low, moderate, or high antioxidant potential. Oocytes were fertilized in vitro and blastocysts transferred to produce F1 offspring. F1 mice were mated with naturally bred mice to generate F2 offspring. Both IVA and the ITA groups in low antioxidant medium showed significantly increased anxiety-like behavior and impaired spatial and fear learning/memory and hippocampal expression of anxiolytic and learning/memory-beneficial genes in both male and female F1 offspring. Furthermore, the aging in both groups increased OS and impaired mitochondrial function in oocytes, blastocysts, and hippocampus of F1 offspring; however, it did not affect the behavior of F2 offspring. It is concluded that POA caused OS and damaged mitochondria in aged oocytes, leading to defects in anxiety-like behavior and learning/memory of F1 offspring. Thus, POA is a crucial factor that causes psychological problems in offspring, and antioxidant measures may be taken to ameliorate the detrimental effects of POA on offspring.


Asunto(s)
Conducta Animal , Mitocondrias , Oocitos , Estrés Oxidativo , Animales , Oocitos/metabolismo , Mitocondrias/metabolismo , Femenino , Ratones , Masculino , Ovulación , Ansiedad/metabolismo , Ansiedad/patología , Antioxidantes/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Blastocisto/metabolismo , Senescencia Celular , Memoria
7.
J Med Chem ; 67(11): 9054-9068, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38781403

RESUMEN

Molecular hybridization is a well-established strategy for developing new drugs. In the pursuit of promising photosensitizers (PSs) with enhanced photodynamic therapy (PDT) efficiency, a series of novel 5-fluorouracil (5FU) gallium corrole conjugates (1-Ga-4-Ga) were designed and synthesized by hybridizing a chemotherapeutic drug and PSs. Their photodynamic antitumor activity was also evaluated. The most active complex (2-Ga) possesses a low IC50 value of 0.185 µM and a phototoxic index of 541 against HepG2 cells. Additionally, the 5FU-gallium corrole conjugate (2-Ga) exhibited a synergistic increase in cytotoxicity under irradiation. Excitedly, treatment of HepG2 tumor-bearing mice with 2-Ga under irradiation could completely ablate tumors without harming normal tissues. 2-Ga-mediated PDT could disrupt mitochondrial function, cause cell cycle arrest in the sub-G1 phase, and activate the cell apoptosis pathway by upregulating the cleaved PARP expression and the Bax/Bcl-2 ratios. This work provides a useful strategy for the design of new corrole-based chemo-photodynamic therapy drugs.


Asunto(s)
Apoptosis , Fluorouracilo , Galio , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Fluorouracilo/farmacología , Fluorouracilo/química , Fluorouracilo/uso terapéutico , Humanos , Galio/química , Galio/farmacología , Animales , Porfirinas/farmacología , Porfirinas/química , Porfirinas/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/uso terapéutico , Ratones , Apoptosis/efectos de los fármacos , Células Hep G2 , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ratones Endogámicos BALB C , Ratones Desnudos
8.
Eur J Med Chem ; 265: 116102, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38176359

RESUMEN

Study on corrole photosensitizers (PSs) for photodynamic therapy (PDT) has made remarkable progress. Targeted delivery of PSs is of great significance for enhancing therapeutic efficiency, decreasing the dosage, and reducing systemic toxicity during PDT. The development of PSs that can be specifically delivered to the subcellular organelle is still an attractive and challenging work. Herein, we synthesize a series of azide-modified corrole phosphorus and gallium complex PSs, in which phosphorus corrole 2-P could not only precisely target the endoplasmic reticulum (ER) with a Pearson correlation coefficient (PCC) up to 0.92 but also possesses the highest singlet oxygen quantum yields (ΦΔ = 0.75). This renders it remarkable PDT activity at a very low dosage (IC50 = 23 nM) towards HepG2 tumor cell line while ablating solid tumors in vivo with excellent biosecurity. Furthermore, 2-P exhibits intense red fluorescence (ΦF = 0.25), outstanding photostability, and a large Stokes shift (190 nm), making it a promising fluorescent probe for ER. This study provides a clinically potential photosensitizer for cancer photodynamic therapy and a promising ER fluorescent probe for bioimaging.


Asunto(s)
Neoplasias , Fotoquimioterapia , Porfirinas , Azidas , Fluorescencia , Fósforo , Colorantes Fluorescentes/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Retículo Endoplásmico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
9.
Phytomedicine ; 131: 155765, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851105

RESUMEN

BACKGROUND: Infection by Toxoplasma gondii can lead to severe pneumonia, with current treatments being highly inadequate. The NLRP3 inflammasome is one member of the NOD-like receptor family with a pyrin domain, which is crucial in the innate immune defense against T. gondii. Research has shown that resveratrol (RSV) prevents lung damage caused by this infection by inhibiting the T. gondii-derived heat shock protein 70/TLR4/NF-κB pathway, thus reducing the macrophage-driven inflammatory response. However, it should be mentioned that the participation of NLRP3 inflammasome in the immune response to the lung injuries caused by T. gondii infections is not entirely clear. PURPOSE: This study aims to clarify how RSV ameliorates lung damage triggered by Toxoplasma gondii infection, with a particular focus on the pathway involving TLR4, NF-κB, and the NLRP3 inflammasome. METHODS: Both in vitro and in vivo models of infection were developed by employing the RH strain of T. gondii in BALB/c mice and RAW 264.7 macrophage cell lines. The action mechanism of RSV was explored using techniques such as molecular docking, surface plasmon resonance, ELISA, Western blot, co-immunoprecipitation, and immunofluorescence staining. RESULTS: Findings indicate that the suppression of TLR4 or NF-κB impacts the levels of proteins associated with the NLRP3 inflammasome pathway. Additionally, a significant affinity for binding between RSV and NLRP3 was observed. Treatment with RSV led to a marked reduction in the activation and formation of the NLRP3 inflammasome within lung tissues and RAW 264.7 cells, alongside a decrease in IL-1ß concentrations in the bronchoalveolar lavage fluid. These outcomes align with those seen when using the NLRP3 inhibitor CY-09. Moreover, the application of CY-09 prior to RSV negated the latter's anti-inflammatory properties. CONCLUSION: Considering insights from previous research alongside the outcomes of the current investigation, it appears that the TLR4/NF-κB/NLRP3 signaling pathway emerges as a promising target for immunomodulation to alleviate lung injury from T. gondii infection. The evidence gathered in this study lays the groundwork for the continued exploration and potential future clinical deployment of RSV as a therapeutic agent with anti-Toxoplasma properties and the capability to modulate the inflammatory response.


Asunto(s)
Inflamasomas , Ratones Endogámicos BALB C , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Neumonía , Resveratrol , Receptor Toll-Like 4 , Toxoplasma , Resveratrol/farmacología , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Células RAW 264.7 , Receptor Toll-Like 4/metabolismo , Neumonía/tratamiento farmacológico , Neumonía/parasitología , Toxoplasma/efectos de los fármacos , FN-kappa B/metabolismo , Toxoplasmosis/tratamiento farmacológico , Pulmón/efectos de los fármacos , Pulmón/parasitología , Simulación del Acoplamiento Molecular , Femenino , Transducción de Señal/efectos de los fármacos , Macrófagos/efectos de los fármacos
10.
Inflammation ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154088

RESUMEN

Depression, recognized globally as a primary cause of disability, has its pathogenesis closely related to neuroinflammation and neuronal damage. Arctiin (ARC), the major bioactive component of Fructus arctii, has various pharmacological activities, such as anti-inflammatory and neuroprotective effects. Building on previous findings that highlighted ARC's capability to mitigate depression by dampening microglial hyperactivation and thereby reducing neuroinflammatory responses and cortical neuronal damage in mice, the current study delves deeper into ARC's therapeutic potential by examining its impact on hippocampal neuronal damage in depression. Utilizing both chronic unpredictable mild stress (CUMS)-induced depression model in mice and corticosterone (CORT)-stimulated PC12 cell model of neuronal damage, the techniques including Nissl staining, immunohistochemistry, western blotting, ELISA, lactate dehydrogenase assays, colony formation assays, immunofluorescence staining and molecular docking were employed to unravel the mechanisms behind ARC's neuroprotective effects. The findings revealed that ARC not only mitigates hippocampal neuropathological damage and reduces serum CORT levels in CUMS-exposed mice but also enhances cell activity while reducing lactate dehydrogenase release in CORT-stimulated PC12 cells. ARC attenuated neuroinflammatory responses and neuronal apoptosis by inhibiting the overactivation of the P2X7 receptor (P2X7R)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling pathway, similar to the effect of A438079 (P2X7R antagonist). Interestingly, pretreatment with A438079 blocked the neuroprotective effect of ARC. Computer modeling predicted that both ARC and A438079 have strong binding with P2X7R and they have the same binding site. These results suggested that ARC may exert a neuroprotective role by binding to P2X7R, thereby inhibiting the P2X7R/NLRP3 inflammasome signaling pathway.

11.
Chin J Integr Med ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046647

RESUMEN

OBJECTIVE: To assess the efficacy and safety of Sanjie Analgesic Capsule (SAC) in Chinese patients with endometriosis-associated pain. METHODS: This was a multicenter, randomized, double-blind, placebo-controlled trial conducted at 15 centers between November 2013 and July 2017 in China. Eligible 323 patients with endometriosis were randomized at a 3:1 ratio to the SAC group (241 cases) and placebo group (82 cases) by stratified block randomization. Patients in the SAC or placebo groups were given SAC or placebo 1.6 g 3 times per day, orally, respectively since the first day of menstruation for 3 consecutive menstrual cycles. The primary endpoint was clinical response to dysmenorrhea evaluated using a 10-point Visual Analogue Scale at 3 and 6 months. The secondary endpoint was the pain score evaluated by VAS (chronic pelvic pain, defecation pain, and dyspareunia) at 3 and 6 months, and the pain recurrence rate at 6 months. Adverse events (AEs) were recorded during the study. RESULTS: A total of 241 women were included in the SAC group, and 82 were in the placebo group. Among these women, 217 (90.0%) and 71 (86.6%) completed the intervention, respectively. At 3 months, overall response rate (ORR) was significantly higher in women administered SAC (80.1%) compared with those who received a placebo (30.5%, P<0.01). Six months after treatment, the ORR for dysmenorrhea was 62.7% in the SAC group and 31.7% in the placebo group (P<0.01). Chronic pelvic pain and defecation pain were significantly improved by SAC compared with placebo (both P<0.05). The incidence rates of total AEs events in the SAC and placebo groups were 6.6% and 9.8%, respectively, and no significant difference was shown between the two groups (P=0.339). CONCLUSION: SAC is well-tolerated and may improve dysmenorrhea in women with endometriosis-associated pain. (Trial registration: ClinicalTrials.gov, No. NCT02031523).

12.
Artículo en Zh | WPRIM | ID: wpr-1017747

RESUMEN

Allergen immunotherapy(AIT)is currently the etiological treatment for respiratory allergic diseases,which can change the natural course of the disease.However,due to the complexity of patients' autoimmune status,allergy triggers and their complicated relationship with AIT vaccines,there are still about 40% of allergic rhinitis and 10%-20% of asthma patients who respond nonoptimally or even don't show any response to AIT. Thus,searching biomarkers that can evaluate and predict the efficacy of AIT and optimize the AIT strategy has been a major focus and challenge in allergy field.Currently,several serologic biomarkers have been found to be associated with AIT efficacy in vitro,but their value as predictive biomarkers of AIT efficacy needs to be further verified. This article reviews the research progress of serologic candidate biomarkers for AIT efficacy.

13.
Artículo en Zh | WPRIM | ID: wpr-1017321

RESUMEN

Objective:To discuss the repairment effect of intra-articular injection of adipose derived stem cells(ADSCs)on articular cartilage destruction in the temporomandibular joint osteoarthritis(TMJOA)model rabbits,and to clarify the possible mechanism.Methods:Twenty-seven rabbits were randomly divided into control group,model group,and ADSCs group.The ADSCs of the rabbits were extracted and cultured.The rabbit TMJOA model was prepared by monosodium-iodoacetate(MIA)injection technique.The temporomandibular joint cavity of the TMJOA model rabbits in ADSCs group was given two continuous intra-articular injections of 1.0×106 mL-1 ADSCs,while the rabbits in control and model group were given sequivalent volume of saline into the temporomandibular joint cavity.After 8 weeks,Micro-CT scan was performed on the temporomandibular joints of the rabbits in various groups;the bone volume fraction(BV/TV),bone surface area/bone volume(BS/BV),trabecular thickness(Tb.Th),trabecular separation(Tb.Sp),and trabecular number(Tb.N)of condyles tissue of the rabbits in various groups were analyzed;HE staining was used to observe the pathomorphology of condyles tissue of the rabbits in various groups;immunohistochemistry was used to detect the localization and expression levels of SRY-related high mobility group box gene 9(SOX9),matrix metalloproteinase-13(MMP-13),and vascular endothelial growth factor(VEGF)proteins in condyles tissue of the rabbits in various groups;Western blotting method was used to detect the expression levels of SOX9,MMP-13,and VEGF proteins in condyles tissue of the rabbits in various groups.Results:The micro-CT scan results showed that compared with control group,the BV/TV,Tb.Th,and Tb.N of condyles tissue of the rabbits in model group were significantly decreased(P<0.05),while the BS/BV and Tb.Sp were significantly increased(P<0.05);compared with model group,the BV/TV,Tb.Th,and Tb.N in condyles tissue of the rabbits in ADSCs group were significantly increased(P<0.05),and the BS/BV and Tb.Sp were significantly decreased(P<0.05).The HE staining results showed that the condylar cartilage surface of the rabbits in control group was smooth with clear layers and intact structure;compared with control group,the surface of condyles tissue of the rabbits in model group was irregular with thickened hypertrophic layer and areas of cell depletion and clustering;compared with model group,the pathological damage of condyles tissue of the rabbits in ADSCs group was significantly decreased.The immunohistochemical staining results showed that compared with control group and ADSCs group,the number of brown granule in condyles tissue of the rabbits in model group was increased,mainly concentrated in the hypertrophic layer,especially in the bone cartilage junction site and the expression levels of SOX9,MMP-13,and VEGF proteins in condyles tissue of the rabbits in model group were significantly increased(P<0.05);compared with model group,the number of brown granule in condyles tissue of the rabbits in ADSCs group was significantly decreased,and the expression levels of SOX9,MMP-13,and VEGF proteins were significantly decreased(P<0.05).The Western blotting results showed that compared with control group,the expression levels of SOX9,MMP-13,and VEGF proteins in condyles tissue of the rabbits in model group were significantly increased(P<0.05);compared with model group,the expression levels of SOX9,MMP-13,and VEGF proteins in condyles tissue of the rabbits in ADSCs group were significantly decreased(P<0.05).Conclusion:Intra-articular injection of ADSCs can effectively repair the cartilage destruction in TMJOA,alleviate the cartilage injury,and mitigate the progression of osteoarthritis.

14.
Artículo en Zh | WPRIM | ID: wpr-1030129

RESUMEN

Medical social work, as a bridge between social welfare policies and healthcare services, is an important force in meeting the diverse and multi-level needs of the people in medical and health care. Due to the particularity of the pediatric population, pediatric medical social work is becoming one of the key areas in the development of medical social work. Beijing Children′s Hospital, Capital Medical University has established a service mode of " collaborative medical and social worker team". The medical social workers acted as supporters to assist healthcare professionals to meet the psychological and social service needs of patients and their families as much as possible, and empowered medical staff′s career development as supporters. At the same time, the medical social workers assisted in the construction of a " child friendly" medical environment, and built a social support network for patients and families. The appropriateness and future prospects of pediatric medical social work were explored, in order to provide reference for its development.

15.
Artículo en Zh | WPRIM | ID: wpr-1021807

RESUMEN

BACKGROUND:There is an internal relationship between hyperhomocysteinemia and vascular calcification.However,the pathogenesis of hyperhomocysteinemia promoting vascular calcification is still unclear. OBJECTIVE:To investigate the role of bone morphogenetic protein-2 in hyperhomocysteinemia-induced vascular calcification. METHODS:Human carotid wax samples were divided into a calcified group(n=29)and a non-calcified group(n=13)according to the presence or absence of calcified plaque.Sixteen ApoE-/-mice were randomly divided into a control group and a hyperhomocysteinemia group,with 8 mice in each group.Bone morphogenetic protein-2 vector was used to transfect rat thoracic artery smooth muscle A7r5 cells,and gradient concentration of homocysteine(50,100,200,and 400 μmol/L)was utilized to treat A7r5 cells.Calcification was detected by alizarin red staining and hematoxylin-eosin staining.The interaction of bone morphogenetic protein 2 with Runt-related transcription factor 2 was detected by immunofluorescence,and the expressions of bone morphogenetic protein 2,Runt-related transcription factor 2,and α-smooth muscle actin were detected by immunohistochemistry and western blot assay. RESULTS AND CONCLUSION:(1)Human carotid artery tissue staining revealed that compared with the non-calcification group,inflammatory cells increased and calcification positive rate increased in the calcification group(P<0.05).Compared with the non-calcification group,the expressions of bone morphogenetic protein-2 and Runt-related transcription factor 2 were up-regulated,and the expression of α-smooth muscle actin was decreased in the calcification group(all P<0.05).(2)The staining of mouse arterial specimens exhibited that,the positive rate of calcified area in the hyperhomocysteinemia group was significantly higher than that in the control group(P<0.05);serum homocysteine level in the hyperhomocysteinemia group was significantly higher than that in the control group(P<0.05).Compared with the control group,the expressions of bone morphogenetic protein-2 and Runt-related transcription factor 2 were up-regulated,and the expression of α-smooth muscle actin was decreased in the hyperhomocysteinemia group(all P<0.05).(3)A7r5 cell culture analysis demonstrated that with the increase of homocysteine concentration gradient,the degree of calcification,the content of bone morphogenetic protein-2 and Runt-related transcription factor 2 protein in A7r5 cells increased(P<0.05),and the content of α-smooth muscle actin protein decreased(P<0.05).(4)The A7r5 cell culture analysis of overexpressed bone morphogenetic protein 2 showed that the calcification degree of the overexpressed bone morphogenetic protein 2 group was increased compared with the corresponding control group,the β-sodium glycerophosphate group,and the homocysteine group.RUNt-related transcription factor 2 expression up-regulated(P<0.05)and α-smooth muscle actin expression down-regulated(P<0.05).(5)The expression of bone morphogenetic protein 2 increased in A7r5 cells cultured with homocysteine in calcified medium,and the expression of Runt-related transcription factor 2 increased with the increase of bone morphogenetic protein 2 expression.(6)The results confirm that bone morphogenetic protein-2 is a key target gene in the regulation of smooth muscle cell phenotypic transformation resulting in vascular calcification by hyperhomocysteinemia.Targeted regulation of bone morphogenetic protein-2 reduces hyperhomocysteinemia-induced vascular calcification.

16.
International Eye Science ; (12): 312-314, 2024.
Artículo en Zh | WPRIM | ID: wpr-1005401

RESUMEN

AIM: To analyze the correlation between ocular surface status and serum lipids in patients with meibomian gland dysfunction(MGD)during pregnancy, and to provide new ideas for the management and treatment of MGD during pregnancy.METHODS: Totally 120 pregnant women(240 eyes)treated in our hospital from May 2021 to May 2022 were selected and they were divided into MGD group(60 cases, 120 eyes)and control group(60 cases, 120 eyes)according to the presence or absence of MGD. All subjects received the ocular surface disease index scores(OSDI)and underwent examinations of meibomian gland morphology and function, tear film and blood lipid.RESULTS: The scores of OSDI, the related indexes of meibomian gland, corneal fluorescein staining(FL)scores, total cholesterol(TC), triglyceride(TG)and low density lipoprotein-cholesterol(LDL-C)in the MGD group were significantly higher than those in the control group(P&#x0026;#x003C;0.05). The scores of fluorescein breakup time(FBUT), Schirmer Ⅰ test(SIt)and high-density lipoprotein cholesterol(HDL-C)in the MGD group were significantly lower than those in the control group(P&#x0026;#x003C;0.05). Correlation analysis showed that the scores of TG, TC, LDL-C were negatively correlated with the values of FBUT(rs =-0.702, -0.647, -0.710, all P&#x0026;#x003C;0.001).CONCLUSION: The level of blood lipids in pregnant patients with MGD is significantly increased, and the levels of TC, TG and LDL-C may be related to the stability of tear film.

17.
Artículo en Zh | WPRIM | ID: wpr-1028771

RESUMEN

AIM To investigate the effect of Wendan Decoction on nerve injury in a mouse model of sleep disorders and its mechanism.METHODS A mouse model of insomnia was established by the modified multiple platform sleep deprivation method.After successful modeling,the mice were randomly divided into the model group,the estazolam tablet group(0.15 mg/kg)and the low-dose and high-dose Wendan Decoction groups(12.5,50 g/kg),with 6 mice in each group,in contrast to the 6 mice of the control group.After 7 days of drug intervention,the mice had their changes of cerebral cortex,hippocampal CA1 area and hypothalamus observed by HE staining;their neuronal damage observed by Nissl staining;their levels of neurofilament light chain(NEFL),neuron-specific enolase(NSE),S100 calcium-binding protein B(S100B),tumor necrosis factor(TNF-α),interleukin-6(IL-6)and interleukin-1β(IL-1β)in brain tissue and serum detected by ELISA;their cerebral expression of glial fibrillary acidic protein(GFAP)detected by immunohistochemical method;and their cerebral expressions of GFAP,phosphorylated IκB kinase β(p-IKKβ)and phosphorylated nuclear transcription factor-κB(p-NF-κB)detected by Western blot.RESULTS Compared with the model group,the high-dose Wendan Decoction group displayed increased number of neurons,complete and neatly arranged structure;decreased number of neurons with nuclear shrinkage and deformation;increased Nissl bodies,decreased levels of NEFL,NSE,S100B,TNF-α,IL-6 and IL-1β in serum and brain tissue(P<0.01);decreased cerebral expression of GFAP(P<0.01);and decreased phosphorylation levels of cerebral p-IKKβ and p-NF-κB(P<0.01).CONCLUSION Wendan Decoction can reduce the nerve damage and the expression of proinflammatory mediator in sleep disorders mice,and the mechanism may be related to the inhibited activation of IKKβ/NF-κB pathway.

18.
Artículo en Zh | WPRIM | ID: wpr-1023887

RESUMEN

AIM:To explore the synergistic sensitization effect of human umbilical cord mesenchymal stem cell culture supernatant(hUMSC-CM)combined with temozolomide(TMZ)on various glioma cell lines,and to elucidate the underlying mechanisms.METHODS:The hUMSC-CM was harvested using two different serum deprivation tech-niques at 24 and 48 h,and was converted into freeze-dried powder,which was then given to rat malignant glioma cell line RG-2,human astrocytoma cell line U251 and human glioblastoma cell line LN-428 at 5 concentrations(0,1,3,6 and 9 g/L).The effectiveness and sensitivity of hUMSC-CM for inhibiting growth of glioma cells at 24,48 and 72 h were as-sessed using CCK-8 assay.Hematoxylin-eosin(HE)staining combined with CCK-8 assay was employed to evaluate the chemotherapy sensitivity of glioma cells after 48 h of treatment with TMZ at 6 concentrations(0,25,50,100,200 and 400 μmol/L).Two concentrations(3 and 9 g/L)of hUMSC-CM and 3 concentrations(50,100 and 200 μmol/L)of TMZ were chosen for concurrent treatment of glioma cells to assess the proliferation and pathological alterations.TUNEL staining was utilized to detect apoptosis.Flow cytometry was utilized to analyze cell cycle modifications.The expression alterations of apoptosis-inducing proteins,cleaved caspase-3,cleaved caspase-8 and cleaved PARP1,as well as autophagy-inducing proteins beclin-1 and LC3,were examined using Western blot to investigate the synergistic sensitization mechanism of hUMSC-CM combined with TMZ in vitro.RESULTS:The susceptibility of glioma cell lines to hUMSC-CM and TMZ varied,with RG-2 showing the highest sensitivity,followed by U251,and then LN-428.The inhibitory effect of hUMSC-CM(3 and 9 g/L)and TMZ(50,100 and 200 μmol/L)combined treatment on glioma cells was significantly greater than that that of single-agent treatments(P<0.05),demonstrating a dose-and concentration-dependent enhancement.Notably,the combination of 9 g/L hUMSC-CM(C9)with 50 μmol/L TMZ(T50)effectively suppressed glioma cell growth.CCK-8 as-say indicated a significant reduction of cell viability in C9+T50 group compared with either C9 or T50 alone(P<0.05).HE staining and TUNEL staining revealed pronounced morphological changes and significant apoptotic features in glioma cells treated with C9+T50.Flow cytometric analysis confirmed that C9+T50 induced cell cycle arrest in glioma cells.Fur-thermore,compared with control group,the levels of cleaved caspase-3,cleaved caspase-8,cleaved PARP1,beclin-1,and LC3-Ⅱ/LC3-Ⅰ were significantly elevated in the C9+T50-treated glioma cells(P<0.01).CONCLUSION:(1)The concomitant administration of hUMSC-CM and TMZ exerts a broad inhibitory effect on glioma cells,with a synergistic sen-sitization observed across different cell lines.(2)The enhancement of glioma cell sensitivity to TMZ by hUMSC-CM may be attributed to the modulation of caspase-8/caspase-3/PARP1 signaling pathway and the induction of both apoptosis and autophagy in glioma cells.

19.
Artículo en Zh | WPRIM | ID: wpr-1029925

RESUMEN

Objective:To analyze the genetic mutation characteristics of glucose-6-phosphate dehydrogenase (G6PD) deficiency among infants in Kunming.Methods:A total of 15 533 infants (7 994 males and 7 539 females) born in Kunming from January 1, 2018, to December 31, 2020, with an age range of 2 to 44 days, were selected. G6PD enzyme activity and gene mutation types were detected using fluorescence quantitative analysis, multicolor melting curve analysis (MMCA), and Sanger sequencing. Droplet digital PCR (ddPCR) was used for quantitative analysis of a newly identified variant family to determine the mutant allele proportion in family members. Meanwhile,the protein structure model and pathogenicity prediction of the novel variant were analyzed.Data analysis was conducted using SPSS 26.0. Specifically, chi-square tests were used for the detection rates of G6PD enzyme activity and gene mutations between different genders. One-way analysis of variance (ANOVA) was used for the comparison of enzyme activity among different mutation types.Results:Among 15 533 infants, 143 cases (129 males and 14 females) were tested positive for G6PD activity, with a detection rate of 0.92% (143/15 533). The difference in detection rates between males and females was statistically significant (χ 2=96.76, P<0.001). Out of 89 enzyme activity-positive cases (83 males and 6 females) underwent genetic testing, 77 (72 males and 5 females) were detected by MMCAand other 12 negative samples were underwent further Sanger sequencing, revealing mutations in 6 samples, all of which were males. Among the 83 individuals with gene mutations, 78 had heterozygous mutations, 1 had a homozygous mutation, and 4 had compound heterozygous mutations. A total of 12 mutation types were detected, with G6PD c.487G>A, c.1024C>T, c.1388G>A, and c.1376G>T being the most common, accounting for 74.70% (62/83) of all mutation types. The average G6PD enzyme activity of c.1376G>T was the lowest, and the differences were statistically significant compared to the average enzyme activity of the other three mutations ( P<0.05). One male infant with a newly identified G6PD c.242G>C mutation was detected, predicted to be pathogenic. ddPCR confirmed that the mother of the affected child was a c.242G>C mutant chimera, with a chimera proportion of 6.66%. Conclusions:In the Kunming region, the predominant G6PD deficiency gene mutation is c.487G>A, with the detection of a novel G6PD c.242G>C mutation. The application of ddPCR technology can assist in detecting the proportion of mutation chimeras.

20.
Artículo en Zh | WPRIM | ID: wpr-1039031

RESUMEN

There are huge differences between tumor cells and normal cells in material metabolism, and tumor cells mainly show increased anabolism, decreased catabolism, and imbalance in substance metabolism. These differences provide the necessary material basis for the growth and reproduction of tumor cells, and also provide important targets for the treatment of tumors. Ferroptosis is an iron-dependent form of cell death characterized by an imbalance of iron-dependent lipid peroxidation and lipid membrane antioxidant systems in cells, resulting in excessive accumulation of lipid peroxide, causing damage to lipid membrane structure and loss of function, and ultimately cell death. The regulation of ferroptosis involves a variety of metabolic pathways, including glucose metabolism, lipid metabolism, amino acid metabolism, nucleotide metabolism and iron metabolism. In order for tumor cells to grow rapidly, their metabolic needs are more vigorous than those of normal cells. Tumor cells are metabolically reprogrammed to meet their rapidly proliferating material and energy needs. Metabolic reprogramming is mainly manifested in glycolysis and enhancement of pentose phosphate pathway, enhanced glutamine metabolism, increased nucleic acid synthesis, and iron metabolism tends to retain more intracellular iron. Metabolic reprogramming is accompanied by the production of reactive oxygen species and the activation of the antioxidant system. The state of high oxidative stress makes tumor cells more susceptible to redox imbalances, causing intracellular lipid peroxidation, which ultimately leads to ferroptosis. Therefore, in-depth study of the molecular mechanism and metabolic basis of ferroptosis is conducive to the development of new therapies to induce ferroptosis in cancer treatment. Ferroptosis, as a regulated form of cell death, can induce ferroptosis in tumor cells by pharmacologically or genetically targeting the metabolism of substances in tumor cells, which has great potential value in tumor treatment. This article summarizes the effects of cellular metabolism on ferroptosis in order to find new targets for tumor treatment and provide new ideas for clinical treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA