RESUMEN
Worldwide molecular research of economically important Phalaris arundinacea (Poaceae) is mainly focused on the invasions of this species from Europe to North America. Until the present study, the genetic diversity of the P. arundinacea had not been studied across the Baltic countries. The objective of this research is to evaluate the diversity of Lithuanian populations of P. arundinacea at simple sequence repeat (SSR) loci comparatively among populations of the Baltic countries, Luxembourg, and the Russian Far East (Eurasian), evaluating differentiation between Lithuanian populations and ornamental accessions, and relating these with environmental features. For six selected Lithuanian river basin populations, GBS low density SNPs were used to determine genetic diversity. Bayesian analysis showed that Eurasian populations of Phalaris arundinacea consist of two gene clusters. Statistically significant genetic differentiation among European and Eurasian populations was documented. Lithuanian genotypes growing naturally along rivers are genetically distinct from cultivated ornamentals. GBS-SNPs divided the six selected Nemunas river basins into three distinct groups with one, two, or three rivers in separate groupings for genetic diversity. Genetic diversity is primarily within, rather than among, Lithuanian, eastern European, and Eurasian populations of P. arundinacea across the continent. Thus, restoration efforts would benefit from local population seed origination.
Asunto(s)
Repeticiones de Microsatélite , Repeticiones de Microsatélite/genética , Phalaris/genética , Polimorfismo de Nucleótido Simple , Variación Genética , Europa OrientalRESUMEN
For the study of the ionomic parameters of Juniperus communis needles, fourteen sites covering most of the territory of Lithuania and belonging to distinct habitats (coastal brown dunes covered with natural Scots pine forests (G), Juniperus communis scrubs (F), transition mires and quaking bogs (D), subcontinental moss Scots pine forests (G), and xero-thermophile fringes) were selected. Concentrations of macro-, micro-, and non-essential elements were analyzed in current-year needles, sampled in September. According to the concentrations of elements in J. communis needles, the differences between the most contrasting populations were as follows: up to 2-fold for Mg, N, K, Ca, and Zn; 2- to 7-fold for P, Na, Fe, Cu, Al, Cr, Ni, and Pb; and 26- to 31-fold for Mn and Cd. The concentrations of Cd, Cr, and Ni in needles of J. communis did not reach levels harmful for conifers. When compared to all other habitats (B, F, G, and E), the populations from transition mires and quaking bogs (D) had significantly lower concentrations of main nutritional elements N (12176 µg/g d. m.), P (1054 µg/g d. m.), and K (2916 µg/g d. m.). In Juniperus communis scrubs (F), a habitat protected by EUNIS, the concentration of K in the needles was highest, while Zn and Cu concentrations were the lowest. Principal component (PC) analyses using concentrations of 15 elements as variables for the discrimination of populations or habitats allowed authors to distinguish F and B habitats from the E habitat (PC1) and F and D habitats from the G habitat (PC2). Discriminating between populations, the most important variables were concentrations of P, N, Mg, Ca, Cu, and K. Discriminating between habitats, the important variables were concentrations of N and P.