Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 598(7881): 495-499, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34497423

RESUMEN

Plants deploy cell-surface and intracellular leucine rich-repeat domain (LRR) immune receptors to detect pathogens1. LRR receptor kinases and LRR receptor proteins at the plasma membrane recognize microorganism-derived molecules to elicit pattern-triggered immunity (PTI), whereas nucleotide-binding LRR proteins detect microbial effectors inside cells to confer effector-triggered immunity (ETI). Although PTI and ETI are initiated in different host cell compartments, they rely on the transcriptional activation of similar sets of genes2, suggesting pathway convergence upstream of nuclear events. Here we report that PTI triggered by the Arabidopsis LRR receptor protein RLP23 requires signalling-competent dimers of the lipase-like proteins EDS1 and PAD4, and of ADR1 family helper nucleotide-binding LRRs, which are all components of ETI. The cell-surface LRR receptor kinase SOBIR1 links RLP23 with EDS1, PAD4 and ADR1 proteins, suggesting the formation of supramolecular complexes containing PTI receptors and transducers at the inner side of the plasma membrane. We detected similar evolutionary patterns in LRR receptor protein and nucleotide-binding LRR genes across Arabidopsis accessions; overall higher levels of variation in LRR receptor proteins than in LRR receptor kinases are consistent with distinct roles of these two receptor families in plant immunity. We propose that the EDS1-PAD4-ADR1 node is a convergence point for defence signalling cascades, activated by both surface-resident and intracellular LRR receptors, in conferring pathogen immunity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Hidrolasas de Éster Carboxílico/metabolismo , Proteínas de Unión al ADN/metabolismo , Inmunidad de la Planta , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/química , Hidrolasas de Éster Carboxílico/química , Proteínas de Unión al ADN/química , Dominios Proteicos , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/química , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo
2.
Plant Biotechnol J ; 22(7): 1913-1925, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38366362

RESUMEN

Potato is the third most important food crop worldwide. Potato production suffers from severe diseases caused by multiple detrimental plant pathogens, and broad-spectrum disease resistance genes are rarely identified in potato. Here we identified the potato non-specific lipid transfer protein StLTPa, which enhances species none-specific disease resistance against various pathogens, such as the oomycete pathogen Phytophthora infestans, the fungal pathogens Botrytis cinerea and Verticillium dahliae, and the bacterial pathogens Pectobacterium carotovorum and Ralstonia solanacearum. The StLTPa overexpression potato lines do not show growth penalty. Furthermore, we provide evidence that StLTPa binds to lipids present in the plasma membrane (PM) of the hyphal cells of P. infestans, leading to an increased permeability of the PM. Adding of PI(3,5)P2 and PI(3)P could compete the binding of StLTPa to pathogen PM and reduce the inhibition effect of StLTPa. The lipid-binding activity of StLTPa is essential for its role in pathogen inhibition and promotion of potato disease resistance. We propose that StLTPa enhances potato broad-spectrum disease resistance by binding to, and thereby promoting the permeability of the PM of the cells of various pathogens. Overall, our discovery illustrates that increasing the expression of a single gene in potato enhances potato disease resistance against different pathogens without growth penalty.


Asunto(s)
Proteínas Portadoras , Membrana Celular , Resistencia a la Enfermedad , Phytophthora infestans , Enfermedades de las Plantas , Proteínas de Plantas , Solanum tuberosum , Solanum tuberosum/microbiología , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/inmunología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Membrana Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Phytophthora infestans/patogenicidad , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Ralstonia solanacearum/patogenicidad , Ralstonia solanacearum/fisiología , Botrytis , Plantas Modificadas Genéticamente , Pectobacterium carotovorum
3.
New Phytol ; 243(4): 1522-1538, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38922927

RESUMEN

Leaf mould, caused by Fulvia fulva, is a devastating disease of tomato plants. In many commercial tomato cultivars, resistance to this disease is governed by the Cf-9 locus, which encodes five paralogous receptor-like proteins. Two of these proteins confer resistance: Cf-9C recognises the previously identified F. fulva effector Avr9 and provides resistance during all plant growth stages, while Cf-9B recognises the yet-unidentified F. fulva effector Avr9B and provides mature plant resistance only. In recent years, F. fulva strains have emerged that can overcome the Cf-9 locus, with Cf-9C circumvented through Avr9 deletion. To understand how Cf-9B is circumvented, we set out to identify Avr9B. Comparative genomics, transient expression assays and gene complementation experiments were used to identify Avr9B, while gene sequencing was used to assess Avr9B allelic variation across a world-wide strain collection. A strict correlation between Avr9 deletion and resistance-breaking mutations in Avr9B was observed in strains recently collected from Cf-9 cultivars, whereas Avr9 deletion but no mutations in Avr9B were observed in older strains. This research showcases how F. fulva has evolved to sequentially break down the Cf-9 locus and stresses the urgent need for commercial tomato cultivars that carry novel, stacked resistance genes active against this pathogen.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Hojas de la Planta , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Sitios Genéticos , Alelos , Basidiomycota/fisiología , Mutación/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Biotechnol J ; 21(3): 646-661, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36519513

RESUMEN

Phytophthora infestans causes severe losses in potato production. The MAPK kinase StMKK1 was previously found to negatively regulate potato immunity to P. infestans. Our results showed that StMKK1 interacts with a protein tyrosine phosphatase, referred to as StPTP1a, and StMKK1 directly phosphorylates StPTP1a at residues Ser-99, Tyr-223 and Thr-290. StPTP1a is a functional phosphatase and the phosphorylation of StPTP1a at these three residues enhances its stability and catalytic activity. StPTP1a negatively regulates potato immunity and represses SA-related gene expression. Furthermore, StPTP1a interacts with, and dephosphorylates, the StMKK1 downstream signalling targets StMPK4 and -7 at their Tyr-203 residue resulting in the repression of salicylic acid (SA)-related immunity. Silencing of NbPTP1a + NbMPK4 or NbPTP1a + NbMPK7 abolished the plant immunity to P. infestans caused by NbPTP1a silencing, indicating that PTP1a functions upstream of NbMPK4 and NbMPK7. StMKK1 requires StPTP1a to negatively regulate SA-related immunity and StPTP1a is phosphorylated and stabilized during immune activation to promote the de-phosphorylation of StMPK4 and -7. Our results reveal that potato StMKK1 activates and stabilizes the tyrosine phosphatase StPTP1a that in its turn de-phosphorylates StMPK4 and -7, thereby repressing plant SA-related immunity.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Proteínas de Plantas/genética , Inmunidad de la Planta , Phytophthora infestans/fisiología , Proteínas Tirosina Fosfatasas/metabolismo , Enfermedades de las Plantas/genética
5.
New Phytol ; 238(2): 781-797, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36653957

RESUMEN

Ubiquitin-like domain-containing proteins (UDPs) are involved in the ubiquitin-proteasome system because of their ability to interact with the 26S proteasome. Here, we identified potato StUDP as a target of the Phytophthora infestans RXLR effector Pi06432 (PITG_06432), which supresses the salicylic acid (SA)-related immune pathway. By overexpressing and silencing of StUDP in potato, we show that StUDP negatively regulates plant immunity against P. infestans. StUDP interacts with, and destabilizes, the 26S proteasome subunit that is referred to as REGULATORY PARTICLE TRIPLE-A ATP-ASE (RPT) subunit StRPT3b. This destabilization represses the proteasome activity. Proteomic analysis and Western blotting show that StUDP decreases the stability of the master transcription factor SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) in SA biosynthesis. StUDP negatively regulates the SA signalling pathway by repressing the proteasome activity and destabilizing StSARD1, leading to a decreased expression of the SARD1-targeted gene ISOCHORISMATE SYNTHASE 1 and thereby a decrease in SA content. Pi06432 stabilizes StUDP, and it depends on StUDP to destabilize StRPT3b and thereby supress the proteasome activity. Our study reveals that the P. infestans effector Pi06432 targets StUDP to hamper the homeostasis of the proteasome by the degradation of the proteasome subunit StRPT3b and thereby suppresses SA-related immunity.


Asunto(s)
Phytophthora infestans , Solanum tuberosum , Phytophthora infestans/metabolismo , Ubiquitinas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteómica , Inmunidad de la Planta , Enfermedades de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
New Phytol ; 236(6): 2249-2264, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36151929

RESUMEN

Heterodimeric complexes incorporating the lipase-like proteins EDS1 with PAD4 or SAG101 are central hubs in plant innate immunity. EDS1 functions encompass signal relay from TIR domain-containing intracellular NLR-type immune receptors (TNLs) towards RPW8-type helper NLRs (RNLs) and, in Arabidopsis thaliana, bolstering of signaling and resistance mediated by cell-surface pattern recognition receptors (PRRs). Increasing evidence points to the activation of EDS1 complexes by small molecule binding. We used CRISPR/Cas-generated mutant lines and agroinfiltration-based complementation assays to interrogate functions of EDS1 complexes in Nicotiana benthamiana. We did not detect impaired PRR signaling in N. benthamiana lines deficient in EDS1 complexes or RNLs. Intriguingly, in assays monitoring functions of SlEDS1-NbEDS1 complexes in N. benthamiana, mutations within the SlEDS1 catalytic triad could abolish or enhance TNL immunity. Furthermore, nuclear EDS1 accumulation was sufficient for N. benthamiana TNL (Roq1) immunity. Reinforcing PRR signaling in Arabidopsis might be a derived function of the TNL/EDS1 immune sector. Although Solanaceae EDS1 functionally depends on catalytic triad residues in some contexts, our data do not support binding of a TNL-derived small molecule in the triad environment. Whether and how nuclear EDS1 activity connects to membrane pore-forming RNLs remains unknown.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Inmunidad de la Planta/genética , Arabidopsis/metabolismo , Receptores de Superficie Celular/metabolismo , Enfermedades de las Plantas , Hidrolasas de Éster Carboxílico/metabolismo
7.
Proc Biol Sci ; 287(1941): 20202723, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33352079

RESUMEN

Natural plant populations encounter strong pathogen pressure and defence-associated genes are known to be under selection dependent on the pressure by the pathogens. Here, we use populations of the wild tomato Solanum chilense to investigate natural resistance against Cladosporium fulvum, a well-known ascomycete pathogen of domesticated tomatoes. Host populations used are from distinct geographical origins and share a defined evolutionary history. We show that distinct populations of S. chilense differ in resistance against the pathogen. Screening for major resistance gene-mediated pathogen recognition throughout the whole species showed clear geographical differences between populations and complete loss of pathogen recognition in the south of the species range. In addition, we observed high complexity in a homologues of Cladosporium resistance (Hcr) locus, underlying the recognition of C. fulvum, in central and northern populations. Our findings show that major gene-mediated recognition specificity is diverse in a natural plant-pathosystem. We place major gene resistance in a geographical context that also defined the evolutionary history of that species. Data suggest that the underlying loci are more complex than previously anticipated, with small-scale gene recombination being possibly responsible for maintaining balanced polymorphisms in the populations that experience pathogen pressure.


Asunto(s)
Ascomicetos , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/fisiología , Cladosporium , Resistencia a la Enfermedad , Genes de Plantas , Solanum lycopersicum/microbiología , Solanum
8.
Plant Physiol ; 178(3): 1310-1331, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30194238

RESUMEN

The intracellular immune receptor Rx1 of potato (Solanum tuberosum), which confers effector-triggered immunity to Potato virus X, consists of a central nucleotide-binding domain (NB-ARC) flanked by a carboxyl-terminal leucine-rich repeat (LRR) domain and an amino-terminal coiled-coil (CC) domain. Rx1 activity is strictly regulated by interdomain interactions between the NB-ARC and LRR, but the contribution of the CC domain in regulating Rx1 activity or immune signaling is not fully understood. Therefore, we used a structure-informed approach to investigate the role of the CC domain in Rx1 functionality. Targeted mutagenesis of CC surface residues revealed separate regions required for the intramolecular and intermolecular interaction of the CC with the NB-ARC-LRR and the cofactor Ran GTPase-activating protein2 (RanGAP2), respectively. None of the mutant Rx1 proteins was constitutively active, indicating that the CC does not contribute to the autoinhibition of Rx1 activity. Instead, the CC domain acted as a modulator of downstream responses involved in effector-triggered immunity. Systematic disruption of the hydrophobic interface between the four helices of the CC enabled the uncoupling of cell death and disease resistance responses. Moreover, a strong dominant negative effect on Rx1-mediated resistance and cell death was observed upon coexpression of the CC alone with full-length Rx1 protein, which depended on the RanGAP2-binding surface of the CC. Surprisingly, coexpression of the N-terminal half of the CC enhanced Rx1-mediated resistance, which further indicated that the CC functions as a scaffold for downstream components involved in the modulation of disease resistance or cell death signaling.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Enfermedades de las Plantas/inmunología , Potexvirus/inmunología , Receptores Inmunológicos/metabolismo , Transducción de Señal , Solanum tuberosum/inmunología , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Dominios Proteicos , Receptores Inmunológicos/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/virología
9.
Mol Plant Microbe Interact ; 31(8): 795-802, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29451434

RESUMEN

The ELICITIN RESPONSE protein (ELR) from Solanum microdontum can recognize INF1 elicitin of Phytophthora infestans and trigger defense responses. ELR is a receptor-like protein (RLP) that lacks a cytoplasmic signaling domain and is anticipated to require interaction with a signaling-competent receptor-like kinase. SUPPRESSOR OF BIR1-1 (SOBIR1) has been proposed as a general interactor for RLPs involved in immunity and, as such, is a potential interactor for ELR. Here, we investigate whether SOBIR1 is required for response to INF1 and resistance to P. infestans and whether it associates with ELR. Our results show that virus-induced gene silencing of SOBIR1 in Nicotiana benthamiana leads to loss of INF1-triggered cell death and increased susceptibility to P. infestans. Using genetic complementation, we found that the kinase activity of SOBIR1 is required for INF1-triggered cell death. Coimmunoprecipitation experiments showed that ELR constitutively associates with potato SOBIR1 in planta, forming a bipartite receptor complex. Upon INF1 elicitation, this ELR-SOBIR1 complex recruits SERK3 (SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3) leading to downstream signaling activation. Overall, our study shows that SOBIR1 is required for basal resistance to P. infestans and for INF1-triggered cell death and functions as an adaptor kinase for ELR.


Asunto(s)
Fosfotransferasas/metabolismo , Phytophthora infestans , Proteínas de Plantas/metabolismo , Solanum/metabolismo , Solanum/microbiología , Muerte Celular , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Dominios Proteicos , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiología
10.
Mol Plant Microbe Interact ; 31(1): 75-85, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28876174

RESUMEN

Receptor-like proteins (RLPs) and receptor-like kinases (RLKs) are cell-surface receptors that are essential for detecting invading pathogens and subsequent activation of plant defense responses. RLPs lack a cytoplasmic kinase domain to trigger downstream signaling leading to host resistance. The RLK SOBIR1 constitutively interacts with the tomato RLP Cf-4, thereby providing Cf-4 with a kinase domain. SOBIR1 is required for Cf-4-mediated resistance to strains of the fungal tomato pathogen Cladosporium fulvum that secrete the effector Avr4. Upon perception of this effector by the Cf-4/SOBIR1 complex, the central regulatory RLK SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3a (SERK3a) is recruited to the complex and defense signaling is triggered. SOBIR1 is also required for RLP-mediated resistance to bacterial, fungal ,and oomycete pathogens, and we hypothesized that SOBIR1 is targeted by effectors of such pathogens to suppress host defense responses. In this study, we show that Pseudomonas syringae pv. tomato DC3000 effector AvrPto interacts with Arabidopsis SOBIR1 and its orthologs of tomato and Nicotiana benthamiana, independent of SOBIR1 kinase activity. Interestingly, AvrPto suppresses Arabidopsis SOBIR1-induced cell death in N. benthamiana. Furthermore, AvrPto compromises Avr4-triggered cell death in Cf-4-transgenic N. benthamiana, without affecting Cf-4/SOBIR1/SERK3a complex formation. Our study shows that the RLP coreceptor SOBIR1 is targeted by a bacterial effector, which results in compromised defense responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas Bacterianas/metabolismo , Proteínas Quinasas/metabolismo , Pseudomonas syringae/metabolismo , Transducción de Señal , Muerte Celular , Inmunidad de la Planta , Plantas Modificadas Genéticamente , Unión Proteica , Nicotiana/genética
11.
Biochim Biophys Acta ; 1861(9 Pt B): 1365-1378, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26825689

RESUMEN

Plants possess effective mechanisms to quickly respond to biotic and abiotic stresses. The rapid activation of phosphatidylinositol-specific phospholipase C (PLC) enzymes occurs early after the stimulation of plant immune-receptors. Genomes of different plant species encode multiple PLC homologs belonging to one class, PLCζ. Here we determined whether all tomato homologs encode active enzymes and whether they can generate signals that are distinct from one another. We searched the recently completed tomato (Solanum lycopersicum) genome sequence and identified a total of seven PLCs. Recombinant proteins were produced for all tomato PLCs, except for SlPLC7. The purified proteins showed typical PLC activity, as different PLC substrates were hydrolysed to produce diacylglycerol. We studied SlPLC2, SlPLC4 and SlPLC5 enzymes in more detail and observed distinct requirements for Ca(2+) ions and pH, for both their optimum activity and substrate preference. This indicates that each enzyme could be differentially and specifically regulated in vivo, leading to the generation of PLC homolog-specific signals in response to different stimuli. PLC overexpression and specific inhibition of PLC activity revealed that PLC is required for both specific effector- and more general "pattern"-triggered immunity. For the latter, we found that both the flagellin-triggered response and the internalization of the corresponding receptor, Flagellin Sensing 2 (FLS2) of Arabidopsis thaliana, are suppressed by inhibition of PLC activity. Altogether, our data support an important role for PLC enzymes in plant defence signalling downstream of immune receptors. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.


Asunto(s)
Fosfoinositido Fosfolipasa C/genética , Inmunidad de la Planta/genética , Solanum lycopersicum/genética , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/enzimología , Familia de Multigenes , Fosfoinositido Fosfolipasa C/biosíntesis , Fosfoinositido Fosfolipasa C/aislamiento & purificación , Proteínas Quinasas/genética
13.
J Integr Plant Biol ; 59(3): 164-179, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28097830

RESUMEN

Understanding plant resistance to pathogenic microbes requires detailed information on the molecular mechanisms controlling the execution of plant innate immune responses. A growing body of evidence places phosphoinositide-specific phospholipase C (PI-PLC) enzymes immediately downstream of activated immune receptors, well upstream of the initiation of early defense responses. An increase of the cytoplasmic levels of free Ca2+ , lowering of the intercellular pH and the oxidative burst are a few examples of such responses and these are regulated by PI-PLCs. Consequently, PI-PLC activation represents an early primary signaling switch between elicitation and response involving the controlled hydrolysis of essential signaling phospholipids, thereby simultaneously generating lipid and non-lipid second messenger molecules required for a swift cellular defense response. Here, we elaborate on the signals generated by PI-PLCs and their respective downstream effects, while providing an inventory of different types of evidence describing the involvement of PI-PLCs in various aspects of plant immunity. We project the discussed information into a model describing the cellular events occurring after the activation of plant immune receptors. With this review we aim to provide new insights supporting future research on plant PI-PLCs and the development of plants with improved resistance.


Asunto(s)
Inmunidad Innata/fisiología , Fosfoinositido Fosfolipasa C/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Inmunidad Innata/genética , Fosfoinositido Fosfolipasa C/genética , Proteínas de Plantas/genética
14.
New Phytol ; 210(2): 627-42, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26765243

RESUMEN

The first layer of plant immunity is activated by cell surface receptor-like kinases (RLKs) and proteins (RLPs) that detect infectious pathogens. Constitutive interaction with the SUPPRESSOR OF BIR1 (SOBIR1) RLK contributes to RLP stability and kinase activity. As RLK activation requires transphosphorylation with a second associated RLK, it remains elusive how RLPs initiate downstream signaling. We employed live-cell imaging, gene silencing and coimmunoprecipitation to investigate the requirement of associated kinases for functioning and ligand-induced subcellular trafficking of Cf RLPs that mediate immunity of tomato against Cladosporium fulvum. Our research shows that after elicitation with matching effector ligands Avr4 and Avr9, BRI1-ASSOCIATED KINASE 1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3 (BAK1/SERK3) associates with Cf-4 and Cf-9. BAK1/SERK3 is required for the effector-triggered hypersensitive response and resistance of tomato against C. fulvum. Furthermore, Cf-4 interacts with SOBIR1 at the plasma membrane and is recruited to late endosomes upon Avr4 trigger, also depending on BAK1/SERK3. These observations indicate that RLP-mediated resistance and endocytosis require ligand-induced recruitment of BAK1/SERK3, reminiscent of BAK1/SERK3 interaction and subcellular fate of the FLAGELLIN SENSING 2 (FLS2) RLK. This reveals that diverse classes of cell surface immune receptors share common requirements for initiation of resistance and endocytosis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Endocitosis , Proteínas Fúngicas/metabolismo , Inmunidad de la Planta , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Membrana Celular/metabolismo , Cladosporium , Endosomas/metabolismo , Ligandos , Solanum lycopersicum/inmunología , Solanum lycopersicum/microbiología , Modelos Biológicos , Plantas Modificadas Genéticamente , Unión Proteica , Nicotiana/genética
15.
Plant Physiol ; 169(3): 1424-35, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26392264

RESUMEN

Laser-ablation electrospray ionization (LAESI)-mass spectrometry imaging has been applied to contrasting plant organs to assess its potential as a procedure for performing in vivo metabolomics in plants. In a proof-of-concept experiment, purple/white segmented Phalaenopsis spp. petals were first analyzed using standard liquid chromatography-mass spectrometry analyses of separate extracts made specifically from the purple and white regions. Discriminatory compounds were defined and putatively annotated. LAESI analyses were then performed on living tissues, and these metabolites were then relocalized within the LAESI-generated data sets of similar tissues. Maps were made to illustrate their locations across the petals. Results revealed that, as expected, anthocyanins always mapped to the purple regions. Certain other (nonvisible) polyphenols were observed to colocalize with the anthocyanins, whereas others were found specifically within the white tissues. In a contrasting example, control and Cladosporium fulvum-infected tomato (Solanum lycopersicum) leaves were subjected to the same procedures, and it could be observed that the alkaloid tomatine has clear heterogeneous distribution across the tomato leaf lamina. Furthermore, LAESI analyses revealed perturbations in alkaloid content following pathogen infection. These results show the clear potential of LAESI-based imaging approaches as a convenient and rapid way to perform metabolomics analyses on living tissues. However, a range of limitations and factors have also been identified that must be taken into consideration when interpreting LAESI-derived data. Such aspects deserve further evaluation before this approach can be applied in a routine manner.


Asunto(s)
Rayos Láser , Orchidaceae/genética , Orchidaceae/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Antocianinas/química , Antocianinas/metabolismo , Cladosporium , Flavonoides/química , Flavonoides/metabolismo , Flores/química , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Estructura Molecular , Enfermedades de las Plantas/microbiología , Espectrometría de Masa por Ionización de Electrospray/instrumentación
16.
J Exp Bot ; 67(11): 3339-51, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27099374

RESUMEN

Receptor-like proteins (RLPs) have been implicated in multiple biological processes, including plant development and immunity to microbial infection. Fifty-seven AtRLP genes have been identified in Arabidopsis, whereas only a few have been functionally characterized. This is due to the lack of suitable physiological screening conditions and the high degree of functional redundancy among AtRLP genes. To overcome the functional redundancy and further understand the role of AtRLP genes, we studied the evolution of AtRLP genes and compiled a comprehensive profile of the transcriptional regulation of AtRLP genes upon exposure to a range of environmental stresses and different hormones. These results indicate that the majority of AtRLP genes are differentially expressed under various conditions that were tested, an observation that will help to select certain AtRLP genes involved in a specific biological process for further experimental studies to eventually dissect their function. A large number of AtRLP genes were found to respond to more than one treatment, suggesting that one single AtRLP gene may be involved in multiple physiological processes. In addition, we performed a genome-wide cloning of the AtRLP genes, and generated and characterized transgenic Arabidopsis plants overexpressing the individual AtRLP genes, presenting new insight into the roles of AtRLP genes, as exemplified by AtRLP3, AtRLP11 and AtRLP28 Our study provides an overview of biological processes in which AtRLP genes may be involved, and presents valuable resources for future investigations into the function of these genes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Estrés Fisiológico
17.
Proc Natl Acad Sci U S A ; 110(24): 10010-5, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23716655

RESUMEN

The plant immune system is activated by microbial patterns that are detected as nonself molecules. Such patterns are recognized by immune receptors that are cytoplasmic or localized at the plasma membrane. Cell surface receptors are represented by receptor-like kinases (RLKs) that frequently contain extracellular leucine-rich repeats and an intracellular kinase domain for activation of downstream signaling, as well as receptor-like proteins (RLPs) that lack this signaling domain. It is therefore hypothesized that RLKs are required for RLPs to activate downstream signaling. The RLPs Cf-4 and Ve1 of tomato (Solanum lycopersicum) mediate resistance to the fungal pathogens Cladosporium fulvum and Verticillium dahliae, respectively. Despite their importance, the mechanism by which these immune receptors mediate downstream signaling upon recognition of their matching ligand, Avr4 and Ave1, remained enigmatic. Here we show that the tomato ortholog of the Arabidopsis thaliana RLK Suppressor Of BIR1-1/Evershed (SOBIR1/EVR) and its close homolog S. lycopersicum (Sl)SOBIR1-like interact in planta with both Cf-4 and Ve1 and are required for the Cf-4- and Ve1-mediated hypersensitive response and immunity. Tomato SOBIR1/EVR interacts with most of the tested RLPs, but not with the RLKs FLS2, SERK1, SERK3a, BAK1, and CLV1. SOBIR1/EVR is required for stability of the Cf-4 and Ve1 receptors, supporting our observation that these RLPs are present in a complex with SOBIR1/EVR in planta. We show that SOBIR1/EVR is essential for RLP-mediated immunity and propose that the protein functions as a regulatory RLK of this type of cell-surface receptors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Hidrolasas de Éster Carboxílico/genética , Cladosporium/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Huésped-Patógeno , Immunoblotting , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Glicoproteínas de Membrana/genética , Microscopía Confocal , Datos de Secuencia Molecular , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Interferencia de ARN , Receptores de Superficie Celular/genética , Verticillium/fisiología
18.
New Phytol ; 208(1): 210-23, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26009937

RESUMEN

Plant nucleotide-binding, leucine-rich repeat (NB-LRR) proteins confer immunity to pathogens possessing the corresponding avirulence proteins. Activation of NB-LRR proteins is often associated with induction of the hypersensitive response (HR), a form of programmed cell death. NRC1 (NB-LRR Required for HR-Associated Cell Death-1) is a tomato (Solanum lycopersicum) NB-LRR protein that participates in the signalling cascade leading to resistance to the pathogens Cladosporium fulvum and Verticillium dahliae. To identify mutations in NRC1 that cause increased signalling activity, we generated a random library of NRC1 variants mutated in their nucleotide-binding domain and screened them for the ability to induce an elicitor-independent HR in Nicotiana tabacum. Screening of 1920 clones retrieved 11 gain-of-function mutants, with 10 of them caused by a single amino acid substitution. All substitutions are located in or very close to highly conserved motifs within the nucleotide-binding domain, suggesting modulation of the signalling activity of NRC1. Three-dimensional modelling of the nucleotide-binding domain of NRC1 revealed that the targeted residues are centred around the bound nucleotide. Our mutational approach has generated a wide set of novel gain-of-function mutations in NRC1 and provides insight into how the activity of this NB-LRR is regulated.


Asunto(s)
Resistencia a la Enfermedad/genética , Mutación , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Dominios y Motivos de Interacción de Proteínas/genética , Proteínas/genética , Solanaceae/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Muerte Celular , Cladosporium/metabolismo , Cladosporium/patogenicidad , Genes de Plantas , Leucina/metabolismo , Proteínas Repetidas Ricas en Leucina , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Estructura Molecular , Mutagénesis , Nucleótidos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas/metabolismo , Transducción de Señal , Solanaceae/metabolismo , Solanaceae/microbiología , Nicotiana/genética , Nicotiana/microbiología , Verticillium/metabolismo , Verticillium/patogenicidad
19.
Mol Plant Microbe Interact ; 27(8): 846-57, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24678832

RESUMEN

The Cf-5 gene of tomato confers resistance to strains of the fungal pathogen Cladosporium fulvum carrying the avirulence gene Avr5. Although Cf-5 has been cloned, Avr5 has remained elusive. We report the cloning of Avr5 using a combined bioinformatic and transcriptome sequencing approach. RNA-Seq was performed on the sequenced race 0 strain (0WU; carrying Avr5), as well as a race 5 strain (IPO 1979; lacking a functional Avr5 gene) during infection of susceptible tomato. Forty-four in planta-induced C. fulvum candidate effector (CfCE) genes of 0WU were identified that putatively encode a secreted, small cysteine-rich protein. An expressed transcript sequence comparison between strains revealed two polymorphic CfCE genes in IPO 1979. One of these conferred avirulence to IPO 1979 on Cf-5 tomato following complementation with the corresponding 0WU allele, confirming identification of Avr5. Complementation also led to increased fungal biomass during infection of susceptible tomato, signifying a role for Avr5 in virulence. Seven of eight race 5 strains investigated escape Cf-5-mediated resistance through deletion of the Avr5 gene. Avr5 is heavily flanked by repetitive elements, suggesting that repeat instability, in combination with Cf-5-mediated selection pressure, has led to the emergence of race 5 strains deleted for the Avr5 gene.


Asunto(s)
Cladosporium/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/microbiología , Transcriptoma , Secuencia de Bases , Mapeo Cromosómico , Cladosporium/patogenicidad , Clonación Molecular , Biología Computacional , Eliminación de Gen , Prueba de Complementación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Solanum lycopersicum/inmunología , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Enfermedades de las Plantas/inmunología , ARN de Hongos/química , ARN de Hongos/genética , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ARN , Virulencia , Factores de Virulencia
20.
New Phytol ; 203(3): 913-25, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24890496

RESUMEN

Hydrolases such as subtilases, vacuolar processing enzymes (VPEs) and the proteasome play important roles during plant programmed cell death (PCD). We investigated hydrolase activities during PCD using activity-based protein profiling (ABPP), which displays the active proteome using probes that react covalently with the active site of proteins. We employed tomato (Solanum lycopersicum) seedlings undergoing synchronized hypersensitive cell death by co-expressing the avirulence protein Avr4 from Cladosporium fulvum and the tomato resistance protein Cf-4. Cell death is blocked in seedlings grown at high temperature and humidity, and is synchronously induced by decreasing temperature and humidity. ABPP revealed that VPEs and the proteasome are not differentially active, but that activities of papain-like cysteine proteases and serine hydrolases, including Hsr203 and P69B, increase before hypersensitive tissue collapse, whereas the activity of a carboxypeptidase-like enzyme is reduced. Similar dynamics were observed for these enzymes in the apoplast of tomato challenged with C. fulvum. Unexpectedly, these challenged plants also displayed novel isoforms of secreted putative VPEs. In the absence of tissue collapse at high humidity, the hydrolase activity profile is already altered completely, demonstrating that changes in hydrolase activities precede hypersensitive tissue collapse.


Asunto(s)
Plantones/enzimología , Plantones/inmunología , Serina Proteasas/metabolismo , Solanum lycopersicum/enzimología , Solanum lycopersicum/inmunología , Cladosporium/fisiología , Espacio Extracelular/metabolismo , Humedad , Espacio Intracelular/metabolismo , Solanum lycopersicum/microbiología , Plantones/microbiología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA