Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nucleic Acids Res ; 50(10): 5864-5880, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35640599

RESUMEN

In the last decade, multiple studies demonstrated that cells maintain a balance of mRNA production and degradation, but the mechanisms by which cells implement this balance remain unknown. Here, we monitored cells' total and recently-transcribed mRNA profiles immediately following an acute depletion of Xrn1-the main 5'-3' mRNA exonuclease-which was previously implicated in balancing mRNA levels. We captured the detailed dynamics of the adaptation to rapid degradation of Xrn1 and observed a significant accumulation of mRNA, followed by a delayed global reduction in transcription and a gradual return to baseline mRNA levels. We found that this transcriptional response is not unique to Xrn1 depletion; rather, it is induced earlier when upstream factors in the 5'-3' degradation pathway are perturbed. Our data suggest that the mRNA feedback mechanism monitors the accumulation of inputs to the 5'-3' exonucleolytic pathway rather than its outputs.


Asunto(s)
Exorribonucleasas , Estabilidad del ARN , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Retroalimentación , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Mol Syst Biol ; 15(8): e8939, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31464369

RESUMEN

Cells respond to environmental fluctuations by regulating multiple transcriptional programs. This response can be studied by measuring the effect of environmental changes on the transcriptome or the proteome of the cell at the end of the response. However, the dynamics of the response reflect the working of the regulatory mechanisms in action. Here, we utilized a fluorescent stress reporter gene to track the dynamics of protein production in yeast responding to environmental stress. The response is modulated by changes in both the duration and rate of transcription. We probed the underlying molecular pathways controlling these two dimensions using a library of ~1,600 single- and double-mutant strains. Dissection of the effects of these mutants and the interactions between them identified distinct modulators of response duration and response rate. Using a combination of mRNA-seq and live-cell microscopy, we uncover mechanisms by which Msn2/4, Mck1, Msn5, and the cAMP/PKA pathway modulate the response of a large module of stress-induced genes in two discrete regulatory phases. Our results and analysis show that transcriptional stress response is regulated by multiple mechanisms that overlap in time and cellular location.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Glucógeno Sintasa Quinasa 3/genética , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Interacción Gen-Ambiente , Genes Reporteros , Glucógeno Sintasa Quinasa 3/deficiencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Mutación , Cloruro de Potasio/farmacología , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Estrés Fisiológico , Factores de Transcripción/metabolismo , Transcripción Genética
3.
Proc Natl Acad Sci U S A ; 111(7): 2602-7, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550289

RESUMEN

The cell cycle is a highly regulated process that enables the accurate transmission of chromosomes to daughter cells. Here we uncover a previously unknown link between the tricarboxylic acid (TCA) cycle and cell cycle progression in the Caenorhabditis elegans early embryo. We found that down-regulation of TCA cycle components, including citrate synthase, malate dehydrogenase, and aconitase, resulted in a one-cell stage arrest before entry into mitosis: pronuclear meeting occurred normally, but nuclear envelope breakdown, centrosome separation, and chromosome condensation did not take place. Mitotic entry is controlled by the cyclin B-cyclin-dependent kinase 1 (Cdk1) complex, and the inhibitory phosphorylation of Cdk1 must be removed in order for the complex to be active. We found that following down-regulation of the TCA cycle, cyclin B levels were normal but CDK-1 remained inhibitory-phosphorylated in one-cell stage-arrested embryos, indicative of a G2-like arrest. Moreover, this was not due to an indirect effect caused by checkpoint activation by DNA damage or replication defects. These observations suggest that CDK-1 activation in the C. elegans one-cell embryo is sensitive to the metabolic state of the cell, and that down-regulation of the TCA cycle prevents the removal of CDK-1 inhibitory phosphorylation. The TCA cycle was previously shown to be necessary for the development of the early embryo in mammals, but the molecular processes affected were not known. Our study demonstrates a link between the TCA cycle and a specific cell cycle transition in the one-cell stage embryo.


Asunto(s)
Caenorhabditis elegans/embriología , Ciclo del Ácido Cítrico/genética , Regulación hacia Abajo/fisiología , Mitosis/fisiología , Animales , Proteína Quinasa CDC2/metabolismo , División Celular/fisiología , Técnica del Anticuerpo Fluorescente , Microscopía Confocal , Mitosis/genética , Fosforilación , Interferencia de ARN , Imagen de Lapso de Tiempo
4.
Dev Biol ; 365(2): 445-57, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22426005

RESUMEN

Nuclear pore complexes (NPCs) are large macromolecular structures embedded in the nuclear envelope (NE), where they facilitate exchange of molecules between the cytoplasm and the nucleoplasm. In most cell types, NPCs are evenly distributed around the NE. However, the mechanisms dictating NPC distribution are largely unknown. Here, we used the model organism Caenorhabditis elegans to identify genes that affect NPC distribution during early embryonic divisions. We found that down-regulation of the Sm proteins, which are core components of the spliceosome, but not down-regulation of other splicing factors, led to clustering of NPCs. Down-regulation of Sm proteins also led to incomplete disassembly of NPCs during mitosis, but had no effect on lamina disassembly, suggesting that the defect in NPC disassembly was not due to a general defect in nuclear envelope breakdown. We further found that these mitotic NPC remnants persisted on an ER membrane that juxtaposes the mitotic spindle. At the end of mitosis, the remnant NPCs moved toward the chromatin and the reforming NE, where they ultimately clustered by forming membrane stacks perforated by NPCs. Our results suggest a novel, splicing-independent, role for Sm proteins in NPC disassembly, and point to a possible link between NPC disassembly in mitosis and NPC distribution in the subsequent interphase.


Asunto(s)
Caenorhabditis elegans/embriología , Poro Nuclear/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación hacia Abajo , Embrión no Mamífero , Mitosis , Poro Nuclear/genética , Poro Nuclear/ultraestructura , Interferencia de ARN , Ribonucleoproteínas Nucleares Pequeñas/antagonistas & inhibidores , Ribonucleoproteínas Nucleares Pequeñas/genética , Empalmosomas/genética , Empalmosomas/metabolismo
5.
G3 (Bethesda) ; 11(11)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34849797

RESUMEN

Aberration in nuclear morphology is one of the hallmarks of cellular transformation. However, the processes that, when mis-regulated, result aberrant nuclear morphology are poorly understood. In this study, we carried out a systematic, high-throughput RNAi screen for genes that affect nuclear morphology in Caenorhabditis elegans embryos. The screen employed over 1700 RNAi constructs against genes required for embryonic viability. Nuclei of early embryos are typically spherical, and their NPCs are evenly distributed. The screen was performed on early embryos expressing a fluorescently tagged component of the nuclear pore complex (NPC), allowing visualization of nuclear shape as well as the distribution of NPCs around the nuclear envelope. Our screen uncovered 182 genes whose downregulation resulted in one or more abnormal nuclear phenotypes, including multiple nuclei, micronuclei, abnormal nuclear shape, anaphase bridges, and abnormal NPC distribution. Many of these genes fall into common functional groups, including some that were not previously known to affect nuclear morphology, such as genes involved in mitochondrial function, the vacuolar ATPase, and the CCT chaperonin complex. The results of this screen add to our growing knowledge of processes that affect nuclear morphology and that may be altered in cancer cells that exhibit abnormal nuclear shape.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Interferencia de ARN
6.
Sci Transl Med ; 13(618): eabj2266, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34591660

RESUMEN

Most severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic tests have relied on RNA extraction followed by reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays. Whereas automation improved logistics and different pooling strategies increased testing capacity, highly multiplexed next-generation sequencing (NGS) diagnostics remain a largely untapped resource. NGS tests have the potential to markedly increase throughput while providing crucial SARS-CoV-2 variant information. Current NGS-based detection and genotyping assays for SARS-CoV-2 are costly, mostly due to parallel sample processing through multiple steps. Here, we have established ApharSeq, in which samples are barcoded in the lysis buffer and pooled before reverse transcription. We validated this assay by applying ApharSeq to more than 500 clinical samples from the Clinical Virology Laboratory at Hadassah hospital in a robotic workflow. The assay was linear across five orders of magnitude, and the limit of detection was Ct 33 (~1000 copies/ml, 95% sensitivity) with >99.5% specificity. ApharSeq provided targeted high-confidence genotype information due to unique molecular identifiers incorporated into this method. Because of early pooling, we were able to estimate a 10- to 100-fold reduction in labor, automated liquid handling, and reagent requirements in high-throughput settings compared to current testing methods. The protocol can be tailored to assay other host or pathogen RNA targets simultaneously. These results suggest that ApharSeq can be a promising tool for current and future mass diagnostic challenges.


Asunto(s)
COVID-19 , SARS-CoV-2 , Prueba de Ácido Nucleico para COVID-19 , Prueba de COVID-19 , Humanos , Manejo de Especímenes
7.
Cell Rep ; 26(1): 279-292.e5, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30605682

RESUMEN

Nucleosome organization has a key role in transcriptional regulation, yet the precise mechanisms establishing nucleosome locations and their effect on transcription are unclear. Here, we use an induced degradation system to screen all yeast ATP-dependent chromatin remodelers. We characterize how rapid clearance of the remodeler affects nucleosome locations. Specifically, depletion of Sth1, the catalytic subunit of the RSC (remodel the structure of chromatin) complex, leads to rapid fill-in of nucleosome-free regions at gene promoters. These changes are reversible upon reintroduction of Sth1 and do not depend on DNA replication. RSC-dependent nucleosome positioning is pivotal in maintaining promoters of lowly expressed genes free from nucleosomes. In contrast, we observe that upon acute stress, the RSC is not necessary for the transcriptional response. Moreover, RSC-dependent nucleosome positions are tightly related to usage of specific transcription start sites. Our results suggest organizational principles that determine nucleosome positions with and without RSC and how these interact with the transcriptional process.


Asunto(s)
Cromatina/metabolismo , Nucleosomas/metabolismo , Factores de Transcripción/metabolismo , Ensamble y Desensamble de Cromatina , Humanos
8.
Cell Rep ; 22(10): 2797-2807, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29514105

RESUMEN

Transcription factor (TF) binding to DNA is crucial for transcriptional regulation. There are multiple methods for mapping such binding. These methods balance between input requirements, spatial resolution, and compatibility with high-throughput automation. Here, we describe SLIM-ChIP (short-fragment-enriched, low-input, indexed MNase ChIP), which combines enzymatic fragmentation of chromatin and on-bead indexing to address these desiderata. SLIM-ChIP reproduces a high-resolution binding map of yeast Reb1 comparable with existing methods, yet with less input material and full compatibility with high-throughput procedures. We demonstrate the robustness and flexibility of SLIM-ChIP by probing additional factors in yeast and mouse. Finally, we show that SLIM-ChIP provides information on the chromatin landscape surrounding the bound transcription factor. We identify a class of Reb1 sites where the proximal -1 nucleosome tightly interacts with Reb1 and maintains unidirectional transcription. SLIM-ChIP is an attractive solution for mapping DNA binding proteins and charting the surrounding chromatin occupancy landscape at a single-cell level.


Asunto(s)
Cromatina/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Línea Celular , Inmunoprecipitación de Cromatina , Genoma , Ratones , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Iniciación de la Transcripción Genética
9.
G3 (Bethesda) ; 3(4): 633-644, 2013 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-23550131

RESUMEN

Trans-lesion DNA polymerases (TLSPs) enable bypass of DNA lesions during replication and are also induced under stress conditions. Being only weakly dependent on their template during replication, TLSPs introduce mutations into DNA. The low processivity of these enzymes ensures that they fall off their template after a few bases are synthesized and are then replaced by the more accurate replicative polymerase. We find that the three TLSPs of budding yeast Saccharomyces cerevisiae Rev1, PolZeta (Rev3 and Rev7), and Rad30 are induced during meiosis at a time when DNA double-strand breaks (DSBs) are formed and homologous chromosomes recombine. Strains deleted for one or any combination of the three TLSPs undergo normal meiosis. However, in the triple-deletion mutant, there is a reduction in both allelic and ectopic recombination. We suggest that trans-lesion polymerases are involved in the processing of meiotic double-strand breaks that lead to mutations. In support of this notion, we report significant yeast two-hybrid (Y2H) associations in meiosis-arrested cells between the TLSPs and DSB proteins Rev1-Spo11, Rev1-Mei4, and Rev7-Rec114, as well as between Rev1 and Rad30 We suggest that the involvement of TLSPs in processing of meiotic DSBs could be responsible for the considerably higher frequency of mutations reported during meiosis compared with that found in mitotically dividing cells, and therefore may contribute to faster evolutionary divergence than previously assumed.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Polimerasa Dirigida por ADN/genética , Meiosis/genética , Saccharomyces cerevisiae/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Mutación , Mapas de Interacción de Proteínas , Recombinación Genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos
10.
Genome Biol ; 8(11): R241, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17999778

RESUMEN

BACKGROUND: Spore germination in the yeast Saccharomyces cerevisiae is a process in which non-dividing haploid spores re-enter the mitotic cell cycle and resume vegetative growth. To study the signals and pathways underlying spore germination we examined the global changes in gene expression and followed cell-cycle and germination markers during this process. RESULTS: We find that the germination process can be divided into two distinct stages. During the first stage, the induced spores respond only to glucose. The transcription program during this stage recapitulates the general transcription response of yeast cells to glucose. Only during the second phase are the cells able to sense and respond to other nutritional components in the environment. Components of the mitotic machinery are involved in spore germination but in a distinct pattern. In contrast to the mitotic cell cycle, growth-related events during germination are not coordinated with nuclear events and are separately regulated. Thus, genes that are co-induced during G1/S of the mitotic cell cycle, the dynamics of the septin Cdc10 and the kinetics of accumulation of the cyclin Clb2 all exhibit distinct patterns of regulation during spore germination, which allow the separation of cell growth from nuclear events. CONCLUSION: Taken together, genome-wide expression profiling enables us to follow the progression of spore germination, thus dividing this process into two major stages, and to identify germination-specific regulation of components of the mitotic cell cycle machinery.


Asunto(s)
Ciclo Celular , Perfilación de la Expresión Génica , Saccharomyces cerevisiae/fisiología , Esporas Fúngicas , Medios de Cultivo , Genes Fúngicos , Glucosa/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Transcripción Genética
11.
Genome Biol ; 7(3): R20, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16542486

RESUMEN

BACKGROUND: Meiosis in budding yeast is coupled to the process of sporulation, where the four haploid nuclei are packaged into a gamete. This differentiation process is characterized by a point of transition, termed commitment, when it becomes independent of the environment. Not much is known about the mechanisms underlying commitment, but it is often assumed that positive feedback loops stabilize the underlying gene-expression cascade. RESULTS: We describe the gene-expression program of committed cells. Sporulating cells were transferred back to growth medium at different stages of the process, and their transcription response was characterized. Most sporulation-induced genes were immediately downregulated upon transfer, even in committed cells that continued to sporulate. Focusing on the metabolic-related transcription response, we observed that pre-committed cells, as well as mature spores, responded to the transfer to growth medium in essentially the same way that vegetative cells responded to glucose. In contrast, committed cells elicited a dramatically different response. CONCLUSION: Our results suggest that cells ensure commitment to sporulation not by stabilizing the process, but by modulating their gene-expression program in an active manner. This unique transcriptional program may optimize sporulation in an environment-specific manner.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Transcripción Genética , Cinética , Microscopía Fluorescente , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , ARN de Hongos/genética , ARN de Hongos/aislamiento & purificación , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/fisiología , Esporas Fúngicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA