Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int Microbiol ; 27(1): 257-263, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37311924

RESUMEN

Bacterial biofilms are a consortium of bacteria that are strongly bound to each other and the surface on which they developed irreversibly. Bacteria can survive adverse environmental conditions and undergo changes when transitioning from a planktonic form to community cells. The process of mycobacteria adhesion is complex, involving characteristics and properties of bacteria, surfaces, and environmental factors; therefore, the formation of different biofilms is possible. Cell wall-, lipid-, and lipid transporter-related genes (glycopeptidolipids, GroEL1, protein kinase) are important in mycobacterial biofilm development. We investigated gene expression during in vitro development of Mycobacterium smegmatis biofilms on a hydroxyapatite (HAP) surface. Biofilm formation by M. smegmatis cells was induced for 1, 2, 3, and 5 days on the HAP surface. Mycobacteria on polystyrene generated an air-liquid interface biofilm, and on the fifth day, it increased by 35% in the presence of HAP. Six genes with key roles in biofilm formation were analyzed by real-time RT‒qPCR during the biofilm formation of M. smegmatis on both abiotic surfaces. The expression of groEL1, lsr2, mmpL11, mps, pknF, and rpoZ genes during biofilm formation on the HAP surface did not exhibit significant changes compared to the polystyrene surface. These genes involved in biofilm formation are not affected by HAP.


Asunto(s)
Proteínas Bacterianas , Mycobacterium smegmatis , Mycobacterium smegmatis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Poliestirenos/metabolismo , Biopelículas , Expresión Génica , Hidroxiapatitas/metabolismo , Lípidos
2.
Microbiology (Reading) ; 161(Pt 2): 300-310, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25479837

RESUMEN

The fungal pathogen Candida glabrata has a well-defined oxidative stress response, is extremely resistant to oxidative stress and can survive inside phagocytic cells. In order to further our understanding of the oxidative stress response in C. glabrata, we characterized the superoxide dismutases (SODs) Cu,ZnSOD (Sod1) and MnSOD (Sod2). We found that Sod1 is the major contributor to total SOD activity and is present in cytoplasm, whereas Sod2 is a mitochondrial protein. Both SODs played a central role in the oxidative stress response but Sod1 was more important during fermentative growth and Sod2 during respiration and growth in non-fermentable carbon sources. Interestingly, C. glabrata cells lacking both SODs showed auxotrophy for lysine, a high rate of spontaneous mutation and reduced chronological lifespan. Thus, our study reveals that SODs play an important role in metabolism, lysine biosynthesis, DNA protection and aging in C. glabrata.


Asunto(s)
Candida glabrata/enzimología , Candida glabrata/crecimiento & desarrollo , ADN de Hongos/genética , Proteínas Fúngicas/metabolismo , Lisina/biosíntesis , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Candida glabrata/genética , Candida glabrata/metabolismo , ADN de Hongos/metabolismo , Proteínas Fúngicas/genética , Viabilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética
3.
Curr Genet ; 61(4): 529-44, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25586543

RESUMEN

Candida glabrata has emerged as an important opportunistic pathogen in both mucosal and bloodstream infections. C. glabrata contains 67 adhesin-like glycosylphosphatidylinositol-cell-wall proteins (GPI-CWPs), which are classified into seven groups and the largest is the Epa family. Epa proteins are very diverse and their expression is differentially regulated. Like many of the EPA genes, EPA2 is localized in a subtelomeric region where it is subject to chromatin-based transcriptional silencing and its role remains largely unexplored. In this study, we show that EPA2 gene is induced specifically in vitro in the presence of oxidative stress generated by H2O2. This induction is dependent on both Yap1 and Skn7, whereas Msn4 represses EPA2 expression. Interestingly, EPA2 is not induced during phagocytosis, but its expression can be identified in the liver in a murine model of systemic infection. Epa2 has no effect on the virulence of C. glabrata. The work presented herein provides a foundation for future studies to dissect the molecular mechanism(s) by which EPA2 of C. glabrata can be induced in the presence of oxidative stress in a region subject to subtelomeric silencing.


Asunto(s)
Candida glabrata/genética , Candida glabrata/patogenicidad , Moléculas de Adhesión Celular/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Factores de Transcripción/genética , Animales , Candida glabrata/efectos de los fármacos , Candida glabrata/metabolismo , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Moléculas de Adhesión Celular/metabolismo , Proteínas Fúngicas/metabolismo , Silenciador del Gen , Peróxido de Hidrógeno/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones , Estrés Oxidativo , Fagocitosis/genética , Telómero/química , Telómero/metabolismo , Factores de Transcripción/metabolismo , Virulencia
4.
FEMS Yeast Res ; 15(6)2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26122277

RESUMEN

Candida glabrata is a fungal pathogen frequently found as a commensal in humans. To colonize and disseminate successfully in the mammalian host, C. glabrata must detect signals within the host and reprogram gene expression to respond appropriately to hostile environmental conditions. One of the layers of regulation of expression of many virulence-related genes (adhesin-encoding genes, genes involved in response to oxidative stress and xenobiotics) is achieved through epigenetic mechanisms. Local and regional silencing is mediated by the activity of two NAD(+)-dependent histone deacetylases, Hst1 and Sir2, respectively, repressing many virulence genes. Hst1 and Sir2 interact with different repressor complexes to achieve regional or local silencing. Sir2 can associate with Sir4, which is then recruited to the telomere by Rap1 and yKu. Deacetylation of the histone tails creates high affinity binding sites for new molecules of the Sir complex, thereby spreading the silent domain over >20 kb. Many of the adhesin-encoding EPA genes are subject to this regulation. Hst1 in turn associates with the Sum1-Rfm1 complex. Sum1 is a DNA-binding protein, which recognizes specific sites at individual promoters, recruiting Hst1 to specific genes involved in the response to oxidative stress and xenobiotics, which results in their repression.


Asunto(s)
Candida glabrata/genética , Candida glabrata/fisiología , Adhesión Celular , Cromatina/metabolismo , Epigénesis Genética , Regulación Fúngica de la Expresión Génica , Estrés Fisiológico , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Histona Desacetilasas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Mapas de Interacción de Proteínas
5.
Mol Microbiol ; 88(6): 1135-48, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23651300

RESUMEN

In Candida glabrata, the sirtuins Sir2 and Hst1 control the expression of a wide number of genes including adhesins required for host colonization and niacin transporters needed for growth. Given that these sirtuins can be inactivated during infection, we asked if their inhibition could modify the response of C. glabrata to other stressful conditions. Here, we found that deletion of HST1 decreases susceptibility of C. glabrata to fluconazole and hydrogen peroxide. The transcription factor Pdr1 and the ABC transporter Cdr1 mediated the fluconazole resistance phenotype of the hst1Δ cells, whereas the transcriptional activator Msn4 and the catalase Cta1 are necessary to provide oxidative stress resistance. We show that the transcription factor Sum1 interacts with Hst1 and participate in the regulation of these genes. Interestingly, even though C. glabrata and Saccharomyces cerevisiae are closely related phylogenetically, deletion of HST1 decreased susceptibility to fluconazole and hydrogen peroxide only in C. glabrata but not in S. cerevisiae, indicating a different transcriptional control by two similar sirtuins. Our findings suggest that Hst1 acts as a regulator of stress resistance associated-genes.


Asunto(s)
Candida glabrata/genética , Farmacorresistencia Fúngica Múltiple , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Estrés Oxidativo , Sirtuinas/metabolismo , Antifúngicos/farmacología , Candida glabrata/efectos de los fármacos , Candida glabrata/fisiología , Fluconazol/farmacología , Eliminación de Gen , Peróxido de Hidrógeno/toxicidad , Mapeo de Interacción de Proteínas , Estrés Fisiológico , Factores de Transcripción/metabolismo
6.
Int. microbiol ; 27(1): 257-263, Feb. 2024. graf
Artículo en Inglés | IBECS (España) | ID: ibc-230258

RESUMEN

Bacterial biofilms are a consortium of bacteria that are strongly bound to each other and the surface on which they developed irreversibly. Bacteria can survive adverse environmental conditions and undergo changes when transitioning from a planktonic form to community cells. The process of mycobacteria adhesion is complex, involving characteristics and properties of bacteria, surfaces, and environmental factors; therefore, the formation of different biofilms is possible. Cell wall-, lipid-, and lipid transporter-related genes (glycopeptidolipids, GroEL1, protein kinase) are important in mycobacterial biofilm development. We investigated gene expression during in vitro development of Mycobacterium smegmatis biofilms on a hydroxyapatite (HAP) surface. Biofilm formation by M. smegmatis cells was induced for 1, 2, 3, and 5 days on the HAP surface. Mycobacteria on polystyrene generated an air–liquid interface biofilm, and on the fifth day, it increased by 35% in the presence of HAP. Six genes with key roles in biofilm formation were analyzed by real-time RT‒qPCR during the biofilm formation of M. smegmatis on both abiotic surfaces. The expression of groEL1, lsr2, mmpL11, mps, pknF, and rpoZ genes during biofilm formation on the HAP surface did not exhibit significant changes compared to the polystyrene surface. These genes involved in biofilm formation are not affected by HAP.(AU)


Asunto(s)
Humanos , Durapatita , Mycobacterium smegmatis , Biopelículas , Proteínas Bacterianas/genética , Expresión Génica , Hidroxiapatitas/metabolismo , Microbiología , Técnicas Microbiológicas , Proteínas Bacterianas/metabolismo , Lípidos , Poliestirenos/metabolismo
7.
Rev Iberoam Micol ; 31(1): 67-71, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24270068

RESUMEN

Organisms have evolved different strategies to respond to oxidative stress generated as a by-product of aerobic respiration and thus maintain the redox homeostasis within the cell. In particular, fungal pathogens are exposed to reactive oxygen species (ROS) when they interact with the phagocytic cells of the host which are the first line of defense against fungal infections. These pathogens have co-opted the enzymatic (catalases, superoxide dismutases (SODs), and peroxidases) and non-enzymatic (glutathione) mechanisms used to maintain the redox homeostasis within the cell, to resist oxidative stress and ensure survival within the host. Several virulence factors have been related to the response to oxidative stress in pathogenic fungi. The opportunistic fungal pathogen Candida glabrata (C. glabrata) is the second most common cause of candidiasis after Candida albicans (C. albicans). C. glabrata has a well defined oxidative stress response (OSR), which include both enzymatic and non-enzymatic mechanisms. C. glabrata OSR is controlled by the well-conserved transcription factors Yap1, Skn7, Msn2 and Msn4. In this review, we describe the OSR of C. glabrata, what is known about its core elements, its regulation and how C. glabrata interacts with the host. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).


Asunto(s)
Candida glabrata/metabolismo , Interacciones Huésped-Patógeno/fisiología , Estrés Oxidativo , Adaptación Fisiológica , Candida glabrata/patogenicidad , Candidiasis/microbiología , Catalasa/fisiología , Proteínas Fúngicas/fisiología , Glutatión/fisiología , Humanos , Huésped Inmunocomprometido , Metalotioneína/fisiología , Infecciones Oportunistas/microbiología , Fagocitosis , Pigmentos Biológicos/fisiología , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/fisiología , Tiorredoxinas/fisiología , Factores de Transcripción/fisiología , Virulencia
8.
Genetics ; 190(4): 1285-97, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22234857

RESUMEN

Candida glabrata, an opportunistic fungal pathogen, adheres to mammalian epithelial cells; adherence is mediated primarily by the Epa1 adhesin. EPA1 is a member of a large gene family of ≈ 23 paralogues, which encode putative adhesins. In this study, we address how EPA1 transcription is regulated. Our data show that EPA1 expression is subject to two distinct negative regulatory mechanisms. EPA1 transcription is repressed by subtelomeric silencing: the Sir complex (Sir2-Sir4), Rap1, Rif1, yKu70, and yKu80 are required for full repression. Activation of EPA1 occurs immediately after dilution of stationary phase (SP) cells into fresh media; however, transcription is rapidly repressed again, limiting expression to lag phase, just as the cells exit stationary phase. This repression following lag phase requires a cis-acting regulatory negative element (NE) located in the EPA1 3'-intergenic region and is independent of telomere proximity. Bioinformatic analysis shows that there are 10 copies of the NE-like sequence in the C. glabrata genome associated with other EPA genes as well as non-EPA genes.


Asunto(s)
Candida glabrata/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Lectinas/metabolismo , Elementos Reguladores de la Transcripción , Candida glabrata/crecimiento & desarrollo , Candida glabrata/metabolismo , Adhesión Celular , División Celular , Células Cultivadas , Mapeo Cromosómico , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Medios de Cultivo/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Proteínas Fúngicas/genética , Silenciador del Gen , Genes Fúngicos , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Lectinas/genética , Técnicas Microbiológicas , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Telómero/genética , Telómero/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Activación Transcripcional
9.
Rev. iberoam. micol ; 31(1): 67-71, ene.-mar. 2014.
Artículo en Inglés | IBECS (España) | ID: ibc-120471

RESUMEN

Organisms have evolved different strategies to respond to oxidative stress generated as a by-product of aerobic respiration and thus maintain the redox homeostasis within the cell. In particular, fungal pathogens are exposed to reactive oxygen species (ROS) when they interact with the phagocytic cells of the host which are the first line of defense against fungal infections. These pathogens have co-opted the enzymatic (catalases, superoxide dismutases (SODs), and peroxidases) and non-enzymatic (glutathione) mechanisms used to maintain the redox homeostasis within the cell, to resist oxidative stress and ensure survival within the host. Several virulence factors have been related to the response to oxidative stress in pathogenic fungi. The opportunistic fungal pathogen Candida glabrata (C. glabrata) is the second most common cause of candidiasis after Candida albicans (C. albicans). C. glabrata has a well defined oxidative stress response (OSR), which include both enzymatic and non-enzymatic mechanisms. C. glabrata OSR is controlled by the well-conserved transcription factors Yap1, Skn7, Msn2 and Msn4. In this review, we describe the OSR of C. glabrata, what is known about its core elements, its regulation and how C. glabrata interacts with the host. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012) (AU)


Los microorganismos han establecido diferentes estrategias para controlar el estrés oxidante generado durante la respiración aeróbica y, por consiguiente, mantener la homeostasia redox en la célula. En particular, los hongos patógenos se exponen a especies reactivas del oxígeno cuando interactúan con las células fagocíticas del huésped que son la primera línea de defensa contra estos agentes infecciosos. Estos patógenos han reclutado sistemas enzimáticos (catalasas, superóxido dismutasas y peroxidasas) y no enzimáticos (glutatión) que normalmente utilizan para mantener la homeostasis redox en la célula, para resistir frente al estrés oxidante y garantizar la supervivencia dentro del huésped. Varios factores de virulencia se han relacionado con la respuesta al estrés oxidante de los hongos patógenos. El hongo patógeno oportunista Candida glabrata (C. glabrata) es la segunda causa más frecuente de candidiasis después de Candida albicans (C. albicans). C. glabrata tiene una respuesta bien definida al estrés oxidante, que incluye sistemas enzimáticos y no enzimáticos y está regulada por los factores de transcripción Yap1, Skn7, Msn2 y Msn4. En esta revisión, describimos los elementos de la respuesta de C. glabrata a dicho estrés, cómo se regula y cómo C. glabrata interacciona con el huésped.Este artículo forma parte de una serie de estudios presentados en el «V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi» (Oaxaca, México, 2012) (AU)


Asunto(s)
Humanos , Masculino , Femenino , Candida glabrata/aislamiento & purificación , Candida glabrata/patogenicidad , Estrés Oxidativo/genética , Estrés Oxidativo/inmunología , Estrés Oxidativo/fisiología , Glutatión/análisis , Glutatión , Virulencia , Virulencia/inmunología , Candida glabrata , Candida glabrata/inmunología , Candida glabrata/metabolismo , Noxas/análisis , Noxas/inmunología , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA