RESUMEN
Jute, eco-friendly natural fiber, depends on conventional water-based microbial retting process that suffers from the production of low-quality fiber, restricting its diversified applications. The efficiency of water retting of jute depends on plant polysaccharide fermenting pectinolytic microorganisms. Understanding the phase difference in retting microbial community composition is crucial to provide knowledge on the functions of each member of microbiota for the improvement of retting and fiber quality. The retting microbiota profiling of jute was commonly performed previously using only one retting phase with culture-dependent methods which has limited coverage and accuracy. Here, for the first we have analyzed jute retting water through WGS metagenome approach in three phases (pre-retting, aerobic retting, and anaerobic retting phases) and characterized the microbial communities both culturable and non-culturable along with their dynamics with the fluctuation of oxygen availability. Our analysis revealed a total of 25.99 × 104 unknown proteins (13.75%), 16.18 × 105 annotated proteins (86.08%), and 32.68 × 102 ribosomal RNA (0.17%) in the pre-retting phase, 15.12 × 104 unknown proteins (8.53%), 16.18 × 105 annotated proteins (91.25%), and 38.62 × 102 ribosomal RNA (0.22%) in the aerobic retting phase, and 22.68 × 102 ribosomal RNA and 80.14 × 104 (99.72%) annotated protein in the anaerobic retting phase. Taxonomically, we identified 53 different phylotypes in the retting environment, with Proteobacteria being the dominant taxa comprising over 60% of the population. We have identified 915 genera from Archaea, Viruses, Bacteria, and Eukaryota in the retting habitat, with anaerobic or facultative anaerobic pectinolytic microflora being enriched in the anoxic, nutrient-rich retting niche, such as Aeromonas (7%), Bacteroides (3%), Clostridium (6%), Desulfovibrio (4%), Acinetobacter (4%), Enterobacter (1%), Prevotella (2%), Acidovorax (3%), Bacillus (1%), Burkholderia (1%), Dechloromonas (2%), Caulobacter (1%) and Pseudomonas (7%). We observed an increase in the expression of 30 different KO functional level 3 pathways in the final retting stage compared to the middle and pre-retting stages. The main functional differences among the retting phases were found to be related to nutrient absorption and bacterial colonization. These findings reveal the bacterial groups that are involved in fiber retting different phases and will facilitate to develop future phase-specific microbial consortia for the improvement of jute retting process.
Asunto(s)
Bacillus , Bacterias , Bacillus/genética , Agua/metabolismo , Ecosistema , Metagenómica , ARN Ribosómico/metabolismo , ARN Ribosómico 16S/genéticaRESUMEN
BACKGROUND: Although it is becoming evident that individual's immune system has a decisive influence on SARS-CoV-2 disease progression, pathogenesis is largely unknown. In this study, we aimed to profile the host transcriptome of COVID-19 patients from nasopharyngeal samples along with virus genomic features isolated from respective host, and a comparative analyses of differential host responses in various SARS-CoV-2 infection systems. RESULTS: Unique and rare missense mutations in 3C-like protease observed in all of our reported isolates. Functional enrichment analyses exhibited that the host induced responses are mediated by innate immunity, interferon, and cytokine stimulation. Surprisingly, induction of apoptosis, phagosome, antigen presentation, hypoxia response was lacking within these patients. Upregulation of immune and cytokine signaling genes such as CCL4, TNFA, IL6, IL1A, CCL2, CXCL2, IFN, and CCR1 were observed in lungs. Lungs lacked the overexpression of ACE2 as suspected, however, high ACE2 but low DPP4 expression was observed in nasopharyngeal cells. Interestingly, directly or indirectly, viral proteins specially non-structural protein mediated overexpression of integrins such as ITGAV, ITGA6, ITGB7, ITGB3, ITGA2B, ITGA5, ITGA6, ITGA9, ITGA4, ITGAE, and ITGA8 in lungs compared to nasopharyngeal samples suggesting the possible way of enhanced invasion. Furthermore, we found comparatively highly expressed transcription factors such as CBP, CEBP, NFAT, ATF3, GATA6, HDAC2, TCF12 which have pivotal roles in lung injury. CONCLUSIONS: Even though this study incorporates a limited number of cases, our data will provide valuable insights in developing potential studies to elucidate the differential host responses on the viral pathogenesis in COVID-19, and incorporation of further data will enrich the search of an effective therapeutics.
Asunto(s)
COVID-19/genética , COVID-19/inmunología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Adulto , Anciano de 80 o más Años , COVID-19/virología , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/inmunología , Citocinas/genética , Femenino , Variación Genética , Humanos , Inmunidad Innata/genética , Integrinas/genética , Pulmón/inmunología , Masculino , Persona de Mediana Edad , Modelos Inmunológicos , Mutación Missense , Nasofaringe/inmunología , Nasofaringe/virología , Pandemias , RNA-Seq , SARS-CoV-2/aislamiento & purificación , Transducción de Señal/genética , Transducción de Señal/inmunología , Transcriptoma , Investigación Biomédica TraslacionalRESUMEN
BACKGROUND: Gibberellin (GA) is one of the most essential phytohormones that modulate plant growth and development. Jute (Corchorus sp.) is the second most important source of bast fiber. Our result has shown that exogenous GA can positively regulate jute height and related characteristics which mean increasing endogenous GA production will help to get a jute variety with improved characteristics. However, genes involved in jute GA biosynthesis have not been analyzed precisely. RESULTS: Genome-wide analysis identified twenty-two candidate genes involved in jute GA biosynthesis pathway. Among them, four genes- CoCPS, CoKS, CoKO and CoKAO work in early steps. Seven CoGA20oxs, three CoGA3oxs, and eight GA2oxs genes work in the later steps. These genes were characterized through phylogenetic, motif, gene structure, and promoter region analysis along with chromosomal localization. Spatial gene expression analysis revealed that 11 GA oxidases were actively related to jute GA production and four of them were marked as key regulators based on their expression level. All the biosynthesis genes both early and later steps showed tissue specificity. GA oxidase genes were under feedback regulation whereas early steps genes were not subject to such regulation. CONCLUSION: Enriched knowledge about jute GA biosynthesis pathway and genes will help to increase endogenous GA production in jute by changing the expression level of key regulator genes. CoGA20ox7, CoGA3ox2, CoGA2ox3, and CoGA2ox5 may be the most important genes for GA production.
Asunto(s)
Corchorus/genética , Corchorus/metabolismo , Giberelinas/metabolismo , Ontología de Genes , Genes de Plantas , Estudio de Asociación del Genoma Completo , Giberelinas/química , Modelos Moleculares , Anotación de Secuencia Molecular , Filogenia , Regiones Promotoras GenéticasRESUMEN
The organosulfur compound dimethylsulfoniopropionate (DMSP) has key roles in stress protection, global carbon and sulfur cycling, chemotaxis, and is a major source of climate-active gases. Saltmarshes are global hotspots for DMSP cycling due to Spartina cordgrasses that produce exceptionally high concentrations of DMSP. Here, in Spartina anglica, we identify the plant genes that underpin high-level DMSP synthesis: methionine S-methyltransferase (MMT), S-methylmethionine decarboxylase (SDC) and DMSP-amine oxidase (DOX). Homologs of these enzymes are common in plants, but differences in expression and catalytic efficiency explain why S. anglica accumulates such high DMSP concentrations and other plants only accumulate low concentrations. Furthermore, DMSP accumulation in S. anglica is consistent with DMSP having a role in oxidative and osmotic stress protection. Importantly, administration of DMSP by root uptake or over-expression of Spartina DMSP synthesis genes confers plant tolerance to salinity and drought offering a route for future bioengineering for sustainable crop production.
Asunto(s)
Poaceae , Compuestos de Sulfonio , Compuestos de Sulfonio/metabolismo , Poaceae/genética , Poaceae/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidad , Sequías , Metiltransferasas/metabolismo , Metiltransferasas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Genes de PlantasRESUMEN
Jute fibre is the second most important fibre next to cotton. It is obtained from the bark of plant through microbial retting process. Here we report optimized microbial retting protocol that can lower retting period and produce high fibre quality. A total of 451 bacterial colonies have been isolated from five jute retting water samples in Bangladesh. Higher pectinolytic bacterial isolates were predominant in the later stage of jute retting. Out of these, 168 isolates have been screened by both semi-quantitative and quantitative pectinase, xylanase and cellulase enzyme assay. Among them, 144 isolates have been selected on the basis of extra cellular enzyme activity of these three enzymes. 16 s ribosomal gene sequencing analysis identified 2 phyla- Firmicutis (80.55%) and Proteobacteria (19.45%). To check the synergistic and antagonistic effect 10 selected isolates were tested in 167 different combinations. Three best combinations were identified that lowered retting period from 18-21 days to 10 days producing high quality fibre in both laboratory and field trial. This improved retting technology can be adopted in industrial scale for the production of quality jute fibre in a controlled condition in reduced water quantity without polluting the environment.
Asunto(s)
Corchorus/metabolismo , Fibras de la Dieta/metabolismo , Poligalacturonasa/metabolismo , Bacterias/genética , Bangladesh , Corchorus/microbiología , Fibras de la Dieta/microbiología , Materiales Manufacturados/microbiología , Textiles/microbiologíaRESUMEN
Jute (Corchorus sp.) is one of the most important sources of natural fibre, covering â¼80% of global bast fibre production1. Only Corchorus olitorius and Corchorus capsularis are commercially cultivated, though there are more than 100 Corchorus species2 in the Malvaceae family. Here we describe high-quality draft genomes of these two species and their comparisons at the functional genomics level to support tailor-designed breeding. The assemblies cover 91.6% and 82.2% of the estimated genome sizes for C. olitorius and C. capsularis, respectively. In total, 37,031 C. olitorius and 30,096 C. capsularis genes are identified, and most of the genes are validated by cDNA and RNA-seq data. Analyses of clustered gene families and gene collinearity show that jute underwent shared whole-genome duplication â¼18.66â million years (Myr) ago prior to speciation. RNA expression analysis from isolated fibre cells reveals the key regulatory and structural genes involved in fibre formation. This work expands our understanding of the molecular basis of fibre formation laying the foundation for the genetic improvement of jute.