Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34074768

RESUMEN

The impact of the Drosophila experimental system on studies of modern biology cannot be understated. The ability to tag endogenously expressed proteins is essential to maximize the use of this model organism. Here, we describe a method for labeling endogenous proteins with self-complementing split fluorescent proteins (split FPs) in a cell-type-specific manner in Drosophila A short fragment of an FP coding sequence is inserted into a specific genomic locus while the remainder of the FP is expressed using an available GAL4 driver line. In consequence, complementation fluorescence allows examination of protein localization in particular cells. Besides, when inserting tandem repeats of the short FP fragment at the same genomic locus, we can substantially enhance the fluorescence signal. The enhanced signal is of great value in live-cell imaging at the subcellular level. We can also accomplish a multicolor labeling system with orthogonal split FPs. However, other orthogonal split FPs do not function for in vivo imaging besides split GFP. Through protein engineering and in vivo functional studies, we report a red split FP that we can use for duplexed visualization of endogenous proteins in intricate Drosophila tissues. Using the two orthogonal split FP systems, we have simultaneously imaged proteins that reside in distinct subsynaptic compartments. Our approach allows us to study the proximity between and localization of multiple proteins endogenously expressed in essentially any cell type in Drosophila.


Asunto(s)
Drosophila/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente/métodos , Coloración y Etiquetado/métodos , Factor 6 de Ribosilación del ADP , Animales , Animales Modificados Genéticamente , Drosophila/genética , Proteínas de Drosophila , Fluorescencia , Proteínas Fluorescentes Verdes/genética , Ingeniería de Proteínas , Factores de Transcripción
2.
Proc Natl Acad Sci U S A ; 113(25): E3501-8, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27274053

RESUMEN

A central challenge of the postgenomic era is to comprehensively characterize the cellular role of the ∼20,000 proteins encoded in the human genome. To systematically study protein function in a native cellular background, libraries of human cell lines expressing proteins tagged with a functional sequence at their endogenous loci would be very valuable. Here, using electroporation of Cas9 nuclease/single-guide RNA ribonucleoproteins and taking advantage of a split-GFP system, we describe a scalable method for the robust, scarless, and specific tagging of endogenous human genes with GFP. Our approach requires no molecular cloning and allows a large number of cell lines to be processed in parallel. We demonstrate the scalability of our method by targeting 48 human genes and show that the resulting GFP fluorescence correlates with protein expression levels. We next present how our protocols can be easily adapted for the tagging of a given target with GFP repeats, critically enabling the study of low-abundance proteins. Finally, we show that our GFP tagging approach allows the biochemical isolation of native protein complexes for proteomic studies. Taken together, our results pave the way for the large-scale generation of endogenously tagged human cell lines for the proteome-wide analysis of protein localization and interaction networks in a native cellular context.


Asunto(s)
Proteínas Fluorescentes Verdes/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas/genética , Electroporación , Células HEK293 , Humanos , Microscopía Fluorescente
3.
Opt Express ; 23(12): 16142-53, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26193587

RESUMEN

We have developed a new open-top selective plane illumination microscope (SPIM) compatible with microfluidic devices, multi-well plates, and other sample formats used in conventional inverted microscopy. Its key element is a water prism that compensates for the aberrations introduced when imaging at 45 degrees through a coverglass. We have demonstrated its unique high-content imaging capability by recording Drosophila embryo development in environmentally-controlled microfluidic channels and imaging zebrafish embryos in 96-well plates. We have also shown the imaging of C. elegans and moving Drosophila larvae on coverslips.


Asunto(s)
Aumento de la Imagen/instrumentación , Microscopía Intravital/instrumentación , Iluminación/instrumentación , Refractometría/instrumentación , Manejo de Especímenes/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Imagenología Tridimensional/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
4.
eNeuro ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349058

RESUMEN

The formation and precise positioning of axons and dendrites are crucial for the development of neural circuits. Although juxtracrine signaling via cell-cell contact is known to influence these processes, the specific structures and mechanisms regulating neuronal process positioning within the central nervous system (CNS) remain to be fully identified. Our study investigates motoneuron 24 (MN24) in the Drosophila embryonic CNS, which is characterized by a complex yet stereotyped axon projection pattern, known as 'axonal routing.' In this motoneuron, the primary dendritic branches project laterally toward the midline, specifically emerging at the sites where axons turn. We observed that Scp2-positive neurons contribute to the lateral fascicle structure in the ventral nerve cord (VNC) near MN24 dendrites. Notably, the knockout of the Down syndrome cell adhesion molecule (Dscam1) results in the loss of dendrites and disruption of proper axonal routing in MN24, while not affecting the formation of the fascicle structure. Through cell-type specific knockdown and rescue experiments of Dscam1, we have determined that the interaction between MN24 and Scp2-positive fascicle, mediated by Dscam1, promotes the development of both dendrites and axonal routing. Our findings demonstrate that the holistic configuration of neuronal structures, such as axons and dendrites, within single motoneurons can be governed by local contact with the adjacent neuron fascicle, a novel reference structure for neural circuitry wiring.Significance Summary We uncover a key neuronal structure serving as a guiding reference for neural circuitry within the Drosophila embryonic CNS, highlighting the essential role of an adjacent axonal fascicle in precisely coordinating axon and dendrite positioning in motoneuron 24 (MN24). Our investigation of cell-cell interactions between motoneurons and adjacent axonal fascicles-crucial for initiating dendrite formation, soma mislocation, and axonal pathfinding in MN24-emphasizes the neuronal fascicle's significance in neural circuit formation through Dscam1-mediated inter-neuronal communication. This enhances our understanding of the molecular underpinnings of motoneuron morphogenesis in Drosophila Given the occurrence of analogous axon fascicle formations within the vertebrate spinal cord, such structures may play a conserved role in the morphogenesis of motoneurons via Dscam1 across phyla.

5.
bioRxiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38645010

RESUMEN

The formation and precise positioning of axons and dendrites are crucial for the development of neural circuits. Although juxtracrine signaling via cell-cell contact is known to influence these processes, the specific structures and mechanisms regulating neuronal process positioning within the central nervous system (CNS) remain to be fully identified. Our study investigates motoneuron 24 (MN24) in the Drosophila embryonic CNS, which is characterized by a complex yet stereotyped axon projection pattern, known as 'axonal routing.' In this motoneuron, the primary dendritic branches project laterally toward the midline, specifically emerging at the sites where axons turn. We observed that Scp2-positive neurons contribute to the lateral fascicle structure in the ventral nerve cord (VNC) near MN24 dendrites. Notably, the knockout of the Down syndrome cell adhesion molecule (dscam1) results in the loss of dendrites and disruption of proper axonal routing in MN24, while not affecting the formation of the fascicle structure. Through cell-type specific knockdown and rescue experiments of dscam1, we have determined that the interaction between MN24 and Scp2-positive fascicle, mediated by Dscam1, promotes the development of both dendrites and axonal routing. Our findings demonstrate that the holistic configuration of neuronal structures, such as axons and dendrites, within single motoneurons can be governed by local contact with the adjacent neuron fascicle, a novel reference structure for neural circuitry wiring.

6.
bioRxiv ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38826199

RESUMEN

i. Accurate identification of the locations of endogenous proteins is crucial for understanding their functions in tissues and cells. However, achieving precise cell-type-specific labeling of proteins has been challenging in vivo . A notable solution to this challenge is the self-complementing split green fluorescent protein (GFP 1-10/11 ) system. In this paper, we present a detailed protocol for labeling endogenous proteins in a cell-type-specific manner using the GFP 1-10/11 system in fruit flies. This approach depends on the reconstitution of the GFP 1-10 and GFP 11 fragments, creating a fluorescence signal. We insert the GFP 11 fragment into a specific genomic locus while expressing its counterpart, GFP 1-10 , through an available Gal4 driver line. The unique aspect of this system is that neither GFP 1-10 nor GFP 11 alone emits fluorescence, enabling the precise detection of protein localization only in Gal4-positive cells expressing the GFP 11 tagged endogenous protein. We illustrate this technique using the adhesion molecule gene teneurin-m ( Ten-m ) as a model, highlighting the generation and validation of GFP 11 protein trap lines via Minos-mediated integration cassette (MiMIC) insertion. Furthermore, we demonstrate the cell-type-specific labeling of Ten-m proteins in the larval brains of fruit flies. This method significantly enhances our ability to image endogenous protein localization patterns in a cell-type-specific manner and is adaptable to various model organisms beyond fruit flies.

7.
Nat Commun ; 15(1): 8777, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39389966

RESUMEN

VAMP-associated protein (VAP) is a type IV integral transmembrane protein at the endoplasmic reticulum (ER). Mutations in human VAPB/ALS8 are associated with amyotrophic lateral sclerosis (ALS). The N-terminal major sperm protein (MSP) domain of VAPB (Drosophila Vap33) is cleaved, secreted, and acts as a signaling ligand for several cell-surface receptors. Although extracellular functions of VAPB are beginning to be understood, it is unknown how the VAPB/Vap33 MSP domain facing the cytosol is secreted to the extracellular space. Here we show that Vap33 is transported to the plasma membrane, where the MSP domain is exposed extracellularly by topological inversion. The externalized MSP domain is cleaved by Matrix metalloproteinase 1/2 (Mmp1/2). Overexpression of Mmp1 restores decreased levels of extracellular MSP domain derived from ALS8-associated Vap33 mutants. We propose an unprecedented secretion mechanism for an ER-resident membrane protein, which may contribute to ALS8 pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Retículo Endoplásmico , Proteínas de Transporte Vesicular , Retículo Endoplásmico/metabolismo , Humanos , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Membrana Celular/metabolismo , Mutación , Dominios Proteicos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Células HEK293 , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 1 de la Matriz/genética , Transporte de Proteínas
8.
Methods Mol Biol ; 2564: 185-201, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36107342

RESUMEN

The protocol in this chapter describes a method to label endogenous proteins using a self-complementing split green fluorescent protein (split GFP1-10/11) in a human cell line. By directly delivering Cas9/sgRNA ribonucleoprotein (RNP) complexes through nucleofection, this protocol allows for the efficient integration of GFP11 into a specific genomic locus via CRISPR-Cas9-mediated homology-directed repair (HDR). We use the GFP11 sequence in the form of a single-stranded DNA (ssDNA) as an HDR template. Because the ssDNA with less than 200 nucleotides used here is commercially synthesized, this approach remains cloning-free. The integration of GFP11 is performed in cells stably expressing GFP1-10, thereby inducing fluorescence reconstitution. Subsequently, such a reconstituted signal is analyzed using fluorescence flow cytometry for estimating knock-in efficiencies and enriching the GFP-positive cell population. Finally, the enriched cells can be visualized using fluorescence microscopy.


Asunto(s)
Sistemas CRISPR-Cas , ADN de Cadena Simple , Línea Celular , Proteínas Fluorescentes Verdes/genética , Humanos , Nucleótidos , Ribonucleoproteínas/genética
9.
Gene Genome Ed ; 52023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37426904

RESUMEN

CRISPR/Cas9 technology has been a powerful tool for gene editing in Drosophila, particularly for knocking in base-pair mutations or a variety of gene cassettes into endogenous gene loci. Among the Drosophila community, there has been a concerted effort to establish CRISPR/Cas9-mediated knock-in protocols that decrease the amount of time spent on molecular cloning. Here, we report the CRISPR/Cas9-mediated insertion of a ~50 base-pair sequence into the ebony gene locus, using a linear double-stranded DNA (PCR product) donor template By circumventing the cloning step of the donor template, our approach suggests the PCR product as a useful alternative knock-in donor format.

10.
Neurosci Insights ; 17: 26331055211069939, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35098129

RESUMEN

Visualization and manipulation of defined motoneurons have provided significant insights into how motor circuits are assembled in Drosophila. A conventional approach for molecular and cellular analyses of subsets of motoneurons involves the expression of a wide range of UAS transgenes using available GAL4 drivers (eg, eve promoter-fused GAL4). However, a more powerful toolkit could be one that enables a single-cell characterization of interactions between neurites from neurons of interest. Here we show the development of a UAS > LexA > QF expression system to generate randomly selected neurons expressing one of the 2 binary expression systems. As a demonstration, we apply it to visualize dendrite-dendrite interactions by genetically labeling eve + neurons with distinct fluorescent reporters.

11.
Commun Biol ; 4(1): 257, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637968

RESUMEN

Self-complementing split fluorescent proteins (split FP1-10/11) have become an important labeling tool in live-cell protein imaging. However, current split FP systems to label multiple proteins in single cells have a fundamental limitation in the number of proteins that can be simultaneously labeled. Here, we describe an approach to expand the number of orthogonal split FP systems with spectrally distinct colors. By combining rational design and cycles of directed evolution, we expand the spectral color palette of FP1-10/11. We also circularly permutate GFP and synthesize the ß-strand 7, 8, or 10 system. These split GFP pairs are not only capable of labeling proteins but are also orthogonal to the current FP1-10/11 pairs, offering multiplexed labeling of cellular proteins. Our multiplexing approach, using the new orthogonal split FP systems, demonstrates simultaneous imaging of four distinct proteins in single cells; the resulting images reveal nuclear localization of focal adhesion protein Zyxin.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Análisis de la Célula Individual , Zixina/metabolismo , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Proteínas Luminiscentes/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteína Fluorescente Roja
12.
Curr Protoc ; 1(7): e203, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34289261

RESUMEN

The Drosophila melanogaster brain comprises different neuronal cell types that interconnect with precise patterns of synaptic connections. These patterns are essential for the normal function of the brain. To understand the connectivity patterns requires characterizing them at single-cell resolution, for which a fluorescence microscope becomes an indispensable tool. Additionally, because the neurons connect at the nanoscale, the investigation often demands super-resolution microscopy. Here, we adopt one super-resolution microscopy technique, called stochastic optical reconstruction microscopy (STORM), improving the lateral and axial resolution to ∼20 nm. This article extensively describes our methods along with considerations for sample preparation of neurons in vitro and in vivo, conjugation of dyes to antibodies, immunofluorescence labeling, and acquisition and processing of STORM data. With these tools and techniques, we open up the potential to investigate cell-cell interactions using STORM in the Drosophila nervous system. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of Drosophila primary neuronal culture and embryonic fillets Basic Protocol 2: Immunofluorescence labeling of samples Basic Protocol 3: Single-molecule fluorescence imaging Basic Protocol 4: Localization and visualization of single-molecule data Supporting Protocol: Conjugation of antibodies with STORM-compatible dyes.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Técnica del Anticuerpo Fluorescente , Microscopía Fluorescente , Neuronas
13.
J Vis Exp ; (155)2020 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-31984960

RESUMEN

We describe a technique for retrograde labeling of motor neurons in Drosophila. We use an oil-dissolved lipophilic dye and deliver a small droplet to an embryonic fillet preparation by a microinjector. Each motor neuron whose membrane is contacted by the droplet can then be rapidly labeled. Individual motor neurons are continuously labeled, enabling fine structural details to be clearly visualized. Given that lipophilic dyes come in various colors, the technique also provides a means to get adjacent neurons labeled in multicolor. This tracing technique is therefore useful for studying neuronal morphogenesis and synaptic connectivity in the motor neuron system of Drosophila.


Asunto(s)
Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Colorantes Fluorescentes/metabolismo , Lípidos/química , Neuronas Motoras/citología , Animales , Dendritas/metabolismo , Disección , Femenino , Inyecciones , Masculino , Neurogénesis
14.
J Cell Biol ; 217(7): 2531-2547, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29728423

RESUMEN

Neuronal polarity relies on the selective localization of cargo to axons or dendrites. The molecular motor kinesin-1 moves cargo into axons but is also active in dendrites. This raises the question of how kinesin-1 activity is regulated to maintain the compartment-specific localization of cargo. Our in vivo structure-function analysis of endogenous Drosophila melanogaster kinesin-1 reveals a novel role for autoinhibition in enabling the dendrite-specific localization of Golgi outposts. Mutations that disrupt kinesin-1 autoinhibition result in the axonal mislocalization of Golgi outposts. Autoinhibition also regulates kinesin-1 localization. Uninhibited kinesin-1 accumulates in axons and is depleted from dendrites, correlating with the change in outpost distribution and dendrite growth defects. Genetic interaction tests show that a balance of kinesin-1 inhibition and dynein activity is necessary to localize Golgi outposts to dendrites and keep them from entering axons. Our data indicate that kinesin-1 activity is precisely regulated by autoinhibition to achieve the selective localization of dendritic cargo.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Aparato de Golgi/genética , Cinesinas/genética , Neuronas/metabolismo , Animales , Axones/metabolismo , Polaridad Celular/genética , Células Cultivadas , Dendritas/genética , Cinesinas/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Mutación/genética , Transporte de Proteínas/genética
15.
Nat Commun ; 7: 11046, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26988139

RESUMEN

In addition to the popular method of fluorescent protein fusion, live cell protein imaging has now seen more and more application of epitope tags. The small size of these tags may reduce functional perturbation and enable signal amplification. To address their background issue, we adapt self-complementing split fluorescent proteins as epitope tags for live cell protein labelling. The two tags, GFP11 and sfCherry11 are derived from the eleventh ß-strand of super-folder GFP and sfCherry, respectively. The small size of FP11-tags enables a cost-effective and scalable way to insert them into endogenous genomic loci via CRISPR-mediated homology-directed repair. Tandem arrangement FP11-tags allows proportional enhancement of fluorescence signal in tracking intraflagellar transport particles, or reduction of photobleaching for live microtubule imaging. Finally, we show the utility of tandem GFP11-tag in scaffolding protein oligomerization. These experiments illustrate the versatility of FP11-tag as a labelling tool as well as a multimerization-control tool for both imaging and non-imaging applications.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Supervivencia Celular , Fluorescencia , Humanos , Multimerización de Proteína , Coloración y Etiquetado
16.
Dev Cell ; 35(1): 93-106, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26460947

RESUMEN

Precise positioning of dendritic branches is a critical step in the establishment of neuronal circuitry. However, there is limited knowledge on how environmental cues translate into dendrite initiation or branching at a specific position. Here, through a combination of mutation, RNAi, and imaging experiments, we found that a Dscam-Dock-Pak1 hierarchical interaction defines the stereotypical dendrite growth site in the Drosophila aCC motoneuron. This interaction localizes the Cdc42 effector Pak1 to the plasma membrane at the dendrite initiation site before the activation of Cdc42. Ectopic expression of membrane-anchored Pak1 overrides this spatial specification of dendritogenesis, confirming its function in guiding Cdc42 signaling. We further discovered that Dscam1 localization in aCC occurs through an inter-neuronal contact that involves Dscam1 in the partner MP1 neuron. These findings elucidate a mechanism by which Dscam1 controls neuronal morphogenesis through spatial regulation of Cdc42 signaling and, subsequently, cytoskeletal remodeling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Dendritas/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Unión al GTP/metabolismo , Neuronas Motoras/citología , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Quinasas p21 Activadas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Moléculas de Adhesión Celular , Diferenciación Celular , Membrana Celular/metabolismo , Células Cultivadas , Citoesqueleto/metabolismo , Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Proteínas de Unión al GTP/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas para Inmunoenzimas , Interneuronas/citología , Interneuronas/metabolismo , Morfogénesis/fisiología , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/genética , Moléculas de Adhesión de Célula Nerviosa/antagonistas & inhibidores , Moléculas de Adhesión de Célula Nerviosa/genética , ARN Interferente Pequeño/genética , Quinasas p21 Activadas/genética
17.
Chem Commun (Camb) ; 51(70): 13451-3, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26226621

RESUMEN

Photoactivatable fluorescent proteins (PA-FPs) are widely used in live single-molecule super-resolution imaging but emit substantially fewer photons than organic dyes do. Herein, we show that in heavy water (D2O) instead of H2O, common PA-FPs emit 26-54% more photons, effectively improving the localization precision in super-resolution imaging.


Asunto(s)
Óxido de Deuterio/química , Colorantes Fluorescentes/química , Proteínas Luminiscentes/química , Imagen Molecular/métodos , Fotones
18.
PLoS One ; 9(2): e88870, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586421

RESUMEN

Protein interactions underlie the complexity of neuronal function. Potential interactions between specific proteins in the brain are predicted from assays based on genetic interaction and/or biochemistry. Genetic interaction reveals endogenous, but not necessarily direct, interactions between the proteins. Biochemistry-based assays, on the other hand, demonstrate direct interactions between proteins, but often outside their native environment or without a subcellular context. We aimed to achieve the best of both approaches by visualizing protein interaction directly within the brain of a live animal. Here, we show a proof-of-principle experiment in which the Cdc42 GTPase associates with its alleged partner WASp within neurons during the time and space that coincide with the newly developing CNS.


Asunto(s)
Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Simulación de Dinámica Molecular , Imagen Molecular/métodos , Proteína de Unión al GTP cdc42/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Embrión no Mamífero , Transferencia Resonante de Energía de Fluorescencia/métodos , Imagen Molecular/instrumentación , Neuronas/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas , Transducción de Señal/fisiología , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Proteína de Unión al GTP cdc42/genética
19.
Opt Nanoscopy ; 2(1)2013 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24380058

RESUMEN

BACKGROUND: Super-resolution microscopy techniques are often extremely susceptible to sample drift due to their high spatial resolution and the long time needed for data acquisition. While several techniques for stabilizing against drift exist, many require complicated additional hardware or intrusive sample preparations. We introduce a method that requires no additional sample preparation, is simple to implement and simultaneously corrects for x, y and z drift. RESULTS: We use bright-field images of the specimen itself to calculate drift in all three dimensions: x, y and z. Bright-field images are acquired on an inexpensive CCD. By correlating each acquired bright-field image with an in-focus and two out-of-focus reference images we determine and actively correct for drift at rates of a few Hertz. This method can maintain stability to within 10 nm for x and y and 20 nm for z over several minutes. CONCLUSION: Our active drift stabilization system is capable of simultaneously compensating x, y and z drift through an image-based correlation method that requires no special sample treatment or extensive microscope modifications. While other techniques may provide better stability, especially for higher frequency drift, our method is easy to implement and widely applicable in terms of both sample type and microscopy technique.

20.
Dev Cell ; 23(6): 1103-10, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23237944

RESUMEN

The recent invention of superresolution microscopy has brought up much excitement in the biological research community. Here, we focus on stochastic optical reconstruction microscopy/photoactivated localization microscopy (STORM/PALM) to discuss the challenges in applying superresolution microscopy to the study of developmental biology, including tissue imaging, sample preparation artifacts, and image interpretation. We also summarize new opportunities that superresolution microscopy could bring to the field of developmental biology.


Asunto(s)
Fenómenos Fisiológicos Celulares , Estructuras Celulares/ultraestructura , Biología Evolutiva/métodos , Microscopía Fluorescente/métodos , Comunicación Celular , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA