Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 624(7991): 263-266, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37931645

RESUMEN

Brown dwarfs serve as ideal laboratories for studying the atmospheres of giant exoplanets on wide orbits, as the governing physical and chemical processes within them are nearly identical1,2. Understanding the formation of gas-giant planets is challenging, often involving the endeavour to link atmospheric abundance ratios, such as the carbon-to-oxygen (C/O) ratio, to formation scenarios3. However, the complexity of planet formation requires further tracers, as the unambiguous interpretation of the measured C/O ratio is fraught with complexity4. Isotope ratios, such as deuterium to hydrogen and 14N/15N, offer a promising avenue to gain further insight into this formation process, mirroring their use within the Solar System5-7. For exoplanets, only a handful of constraints on 12C/13C exist, pointing to the accretion of 13C-rich ice from beyond the CO iceline of the disks8,9. Here we report on the mid-infrared detection of the 14NH3 and 15NH3 isotopologues in the atmosphere of a cool brown dwarf with an effective temperature of 380 K in a spectrum taken with the Mid-Infrared Instrument (MIRI) of JWST. As expected, our results reveal a 14N/15N value consistent with star-like formation by gravitational collapse, demonstrating that this ratio can be accurately constrained. Because young stars and their planets should be more strongly enriched in the 15N isotope10, we expect that 15NH3 will be detectable in several cold, wide-separation exoplanets.

2.
Faraday Discuss ; 245(0): 112-137, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37462069

RESUMEN

The understanding of planet formation has changed recently, embracing the new idea of pebble accretion. This means that the influx of pebbles from the outer regions of planet-forming disks to their inner zones could determine the composition of planets and their atmospheres. The solid and molecular components delivered to the planet-forming region can be best characterized by mid-infrared spectroscopy. With Spitzer low-resolution (R = 100, 600) spectroscopy, this approach was limited to the detection of abundant molecules, such as H2O, C2H2, HCN and CO2. This contribution will present the first results of the MINDS (MIRI mid-INfrared Disk Survey, PI:Th Henning) project. Due do the sensitivity and spectral resolution provided by the James Webb Space Telescope (JWST), we now have a unique tool to obtain the full inventory of chemistry in the inner disks of solar-type stars and brown dwarfs, including also less-abundant hydrocarbons and isotopologues. The Integral Field Unit (IFU) capabilities will enable at the same time spatial studies of the continuum and line emission in extended sources such as debris disks, the flying saucer and also the search for mid-IR signatures of forming planets in systems such as PDS 70. These JWST observations are complementary to ALMA and NOEMA observations of outer-disk chemistry; together these datasets will provide an integral view of the processes occurring during the planet-formation phase.

7.
J Phys Chem A ; 117(39): 9593-604, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23750782

RESUMEN

We present an extension of the code ProDiMo that allows for a modeling of processes pertinent to active galactic nuclei and to an ambient chemistry that is time dependent. We present a proof-of-concept and focus on a few astrophysically relevant species, e.g., H+, H2(+), and H3(+); C+ and N+; C and O; CO and H2O; OH+, H2O+, and H3O+; and HCN and HCO+. We find that the freeze-out of water is strongly suppressed and that this affects the bulk of the oxygen and carbon chemistry occurring in the active galactic nucleus (AGN). The commonly used AGN tracer HCN/HCO+ is strongly time-dependent, with ratios that vary over orders of magnitude for times longer than 10(4) years. Through Atacama large millimeter array observations this ratio can be used to probe how the narrow-line region evolves under large fluctuations in the supermassive black hole accretion rate. Strong evolutionary trends, on time scales of 10(4)­10(8) years are also found in species such as H3O+, CO, and H2O. These reflect, respectively, time-dependent effects in the ionization balance, the transient nature of the production of molecular gas, and the freeze-out/sublimation of water.

8.
Life (Basel) ; 4(2): 142-73, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25370190

RESUMEN

We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA