RESUMEN
Camellia fascicularis has important ornamental, medicinal, and food value. It also has tremendous potential for exploiting bioactivities. However, the bioactivities of secondary metabolites in C. fascicularis have not been reported. The structures of compounds were determined by spectral analysis and nuclear magnetic resonance (NMR) combined with the available literature on secondary metabolites of C. fascicularis leaves. In this study, 15 compounds were identified, including 5 flavonoids (1-5), a galactosylglycerol derivative (6), a terpenoid (7), 4 lignans (8-11), and 4 phenolic acids (12-15). Compounds 6-7 and 9-12 were isolated from the genus Camellia for the first time. The remaining compounds were also isolated from C. fascicularis for the first time. Evaluation of antioxidant and antimicrobial activities revealed that compounds 5 and 8-11 exhibited stronger antioxidant activity than the positive drug ascorbic acid, while compounds 7, 13, and 15 showed similar activity to ascorbic acid. The minimum inhibitory concentration (MIC) of antibacterial activity for compounds 5, 7, 9, 11, and 13 against Pseudomonas aeruginosa was comparable to that of the positive control drug tetracycline at a concentration of 62.50 µg/mL; other secondary metabolites inhibited Escherichia coli and Staphylococcus aureus at concentrations ranging from 125-250 µg/mL.
RESUMEN
Hyperlipidemia is a prevalent chronic metabolic disease that severely affects human health. Currently, commonly used clinical therapeutic drugs are prone to drug dependence and toxic side effects. Dietary intervention for treating chronic metabolic diseases has received widespread attention. Rosa sterilis is a characteristic fruit tree in China whose fruits are rich in flavonoids, which have been shown to have a therapeutic effect on hyperlipidemia; however, their exact molecular mechanism of action remains unclear. Therefore, this study aimed to investigate the therapeutic effects of R. sterilis total flavonoid extract (RS) on hyperlipidemia and its possible mechanisms. A hyperlipidemic zebrafish model was established using egg yolk powder and then treated with RS to observe changes in the integral optical density in the tail vessels. Network pharmacology and molecular docking were used to investigate the potential mechanism of action of RS for the treatment of hyperlipidemia. The results showed that RS exhibited favorable hypolipidemic effects on zebrafish in the concentration range of 3.0-30.0 µg/mL in a dose-dependent manner. Topological and molecular docking analyses identified HSP90AA1, PPARA, and MMP9 as key targets for hypolipidemic effects, which were exerted mainly through lipolytic regulation of adipocytes and lipids; pathway analysis revealed enrichment in atherosclerosis, chemical carcinogenic-receptor activation pathways in cancers, and proteoglycans in prostate cancer and other cancers. Mover, chinensinaphthol possessed higher content and better target binding ability, which suggested that chinensinaphthol might be an important component of RS with hypolipidemic active function. These findings provide a direction for further research on RS interventions for the treatment of hyperlipidemia.
RESUMEN
Vaccinium dunalianum leaf buds make one of the most commonly used herbal teas of the Yi people in China, which is used to treat articular rheumatism, relax tendons, and stimulates blood circulation in the body. In addition, 6'-O-caffeoylarbutin (CA) is a standardized extract of V. dunalianum, which has been found in dried leaf buds, reaching levels of up to 31.76%. Because of the uncommon phenomenon, it is suggested that CA may have a potential therapeutic role in hyperlipidemia and thrombosis. This study was designed to study the efficacy of CA on treating hyperlipidemia and thrombosis and the possible mechanisms behind these effects. Hyperlipidemia and thrombosis zebrafish models were treated with CA to observe variations of the integrated optical density within the vessels and the intensity of erythrocyte staining within the hearts. The possible mechanisms were explored using network pharmacology and molecular docking. The results demonstrate that CA exhibits an excellent hypolipidemic effect on zebrafish at concentrations ranging from 3.0 to 30.0 µg/mL and shows thrombosis inhibitory activity in zebrafish at a concentration of 30.0 µg/mL, with an inhibition rate of 44%. Moreover, network pharmacological research shows that MMP9, RELA, MMP2, PRKCA, HSP90AA1, and APP are major targets of CA for therapy of hyperlipidemia and thrombosis, and may relate to pathways in cancer, chemical carcinogenesis-receptor activation, estrogen signaling pathway, and the AGE-RAGE signaling pathway in diabetic complications.
Asunto(s)
Arbutina , Ácidos Cafeicos , Medicamentos Herbarios Chinos , Hiperlipidemias , Trombosis , Animales , Arbutina/análogos & derivados , Fibrinolíticos/farmacología , Hiperlipidemias/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Trombosis/tratamiento farmacológico , Pez CebraRESUMEN
Volatile organic compounds (VOCs) and flavor characteristics of Rosa roxburghii Tratt. (RR) and Rosa sterilis (RS) were analyzed using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). The flavor network was constructed by combining relative odor activity values (ROAVs), and the signature differential flavor components were screened using orthogonal partial least squares discriminant analysis (OPLS-DA) and random forest (RF). The results showed that 61 VOCs were detected in both RR and RS: 48 in RR, and 26 in RS. There were six key flavor components (ROAVs ≥ 1) in RR, namely nonanal, ethyl butanoate, ethyl hexanoate, (3Z)-3-hexen-1-yl acetate, ethyl caprylate, and styrene, among which ethyl butanoate had the highest contribution, whereas there were eight key flavor components (ROAVs ≥ 1) in RS, namely 2-nonanol, (E)-2-hexenal, nonanal, methyl salicylate, ß-ocimene, caryophyllene, α-ionone, and styrene, among which nonanal contributed the most to RS. The flavor of RR is primarily fruity, sweet, green banana, and waxy, while the flavor of RS is primarily sweet and floral. In addition, OPLS-DA and RF suggested that (E)-2-hexenal, ethyl caprylate, ß-ocimene, and ethyl butanoate could be the signature differential flavor components for distinguishing between RR and RS. In this study, the differences in VOCs between RR and RS were analyzed to provide a basis for further development and utilization.
Asunto(s)
Rosa , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis , EstirenosRESUMEN
Rapeseed straw, bagasse, and walnut peel have a large amount of resource reserves, but there are few technologies for high value-added utilization. In the research of biochar, walnut green husk is rarely used as raw material. In addition, the three main components of biomass (lignin, cellulose, and hemicellulose) are present in similar proportions, and the differences between the physical and chemical properties of biochar prepared with similar amounts of biomass raw materials are not clear. Using three kinds of biomass of the same quality as raw materials, biochar was prepared via pyrolysis at 400 °C, and activated carbon was prepared via CO2 activation at 800 °C. The results showed that the pore numbers of the three kinds of biochar increased after activation, resulting in the increase of the specific surface area. The resulting numbers were 352.99 m2/g for sugarcane bagasse biochar (SBB)-CO2, 215.04 m2/g for rapeseed straw biochar (RSB)-CO2, and 15.53 m2/g for walnut green husk biochar (WGB)-CO2. Ash increased the amount of carbon formation, but a large amount of ash caused biochar to form a perforated structure and decreased the specific surface area (e.g., WGB), which affected adsorption ability. When the three main components were present in similar proportions, a high content of cellulose and lignin was beneficial to the preparation of biochar. The adsorption value of MB by biochar decreased with the increase of biomass ash content. After activation, the maximum adsorption value of MB for bagasse biochar was 178.17 mg/g, rapeseed straw biochar was 119.25 mg/g, and walnut peel biochar was 85.92 mg/g when the concentration of methene blue solution was 300 mg/L and the biochar input was 0.1 g/100 mL at room temperature. The adsorption of MB by biochar in solution occurs simultaneously with physical adsorption and chemical adsorption, with chemical adsorption being dominant. The optimal MB adsorption by SBB-CO2 was dominated by multimolecular-layer adsorption. This experiment provides a theoretical basis for the preparation of biochar and research on its applications in the future.
Asunto(s)
Brassica napus , Brassica rapa , Juglans , Saccharum , Celulosa , Lignina , Adsorción , Biomasa , Dióxido de Carbono , Carbón Orgánico , Azul de Metileno , Grano ComestibleRESUMEN
Juice, as a liquid foodstuff, is subject to spoilage and damage due to complications during transport and storage. The appearance of intact outer packaging often makes spoilage and damage difficult to detect. Therefore, it of particular importance to develop a fast, real-time material to evaluate liquid foodstuffs. In this paper, starch films with pH response characteristics are successfully prepared by inorganic ion modification by utilizing whole starch and amylopectin as raw materials. The mechanical properties, stability properties, hydrophilic properties and pH electrical signal response indices of the films are analyzed and measured. The films exhibit good electrical conductivity values with 1.0 mL of ion addition (10 mmol/L), causing the composite film to respond sensitively to solutions with varying pH values. In the test of spoiled orange juice, the full-component corn starch (CS) film has more sensitive resistance and current responses, which is more conducive for applications in the quality monitoring of juice. The results indicate that modified starch films can potentially be applied in the real-time monitoring of the safety of liquid foodstuffs.
Asunto(s)
Jugos de Frutas y Vegetales , Almidón , Almidón/química , Amilopectina , Embalaje de Alimentos/métodos , AlimentosRESUMEN
Walnuts play a positive role in human health due to their large amounts of unsaturated fatty acids, whereas lipid oxidation can easily occur during storage. Herein, three natural antioxidants (epicatechin, sesamol, and myricetin) were added to the composite film cross-linked with chitosan and soy protein peptide, and the antioxidant film appropriate for the preservation of walnut kernels from Juglans sigillata was screened to improve the storage quality of walnuts. The results showed that three antioxidant films could all enhance the storage performance of walnut kernels, with sesamol being the best. The characterization of antioxidant film cross-linked with chitosan and soy protein peptide containing sesamol (C/S-ses film) revealed that the composite film improved the slow release and stability of sesamol; in addition, the presence of sesamol could effectively reduce the light transmittance and water vapor permeability of the composite film, together with significantly enhancing the antioxidant and antimicrobial activities, resulting in an effective prolongation of the storage period of walnut kernels. These findings indicated that C/S-ses possess excellent potential for retarding the oxidative rancidity of unsaturated fatty acids and will provide an effective strategy for the preservation of walnut kernels.
RESUMEN
Camellia fascicularis has important ornamental, medicinal, and food values, which also have tremendous potential for exploiting bioactivities. We performed the bioactivity-guided (antioxidant and antimicrobial) screening of eight fractions obtained from the ethyl acetate phase of C. fascicularis. The antioxidant activity was measured by DPPH, ABTS, and FRAP, and the antibacterial activity was measured by the minimum inhibitory concentration (MIC) of Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. The results of bioactivity-guided isolation indicated that the major antioxidant compounds in the ethanolic extracts of C. fascicularis may be present in fractions (Fr.) (A-G, obtained after silica gel column chromatography). Fr. (D-I, obtained after silica gel column chromatography) is a fraction of C. fascicularis with antimicrobial activity. The structures of compounds were determined by spectral analysis and nuclear magnetic resonance (NMR) combined with the available literature on secondary metabolites of C. fascicularis leaves. In this study, 17 compounds were identified, including four phenolics (1, 3-4, and 14), a phenylpropane (2), five terpenoids (5-7, 12, and 15), four flavonoids and flavonoid glycosides (8-10 and 16), and two lignins (13 and 17). Compounds 4-7, 13-15, and 17 were isolated from the genus Camellia for first time. The remaining compounds were also isolated from C. fascicularis for first time. The evaluation of antioxidant and antimicrobial activities revealed that compounds 1, 3, 9, 11, and 17 exhibited higher antioxidant activity than the positive control drug (ascorbic acid), and compounds 4, 8, 10, and 13 showed similar activity to ascorbic acid. The other compounds had weaker or no significant antioxidant activities. The MIC of antibacterial activity for compounds 4, 7, and 11-13 against P. aeruginosa was comparable to that of the positive control drug tetracycline at 125 µg/mL, and other secondary metabolites inhibited E. coli and S. aureus at 250-500 µg/mL. This is also the first report of antioxidant and antimicrobial activities of compounds 5-7, 13-15, and 17. The results of the study enriched the variety of secondary metabolites of C. fascicularis and laid the foundation for further research on the pharmacological efficacy and biological activity of this plant.
RESUMEN
The effect of adding bamboo shoots to stewing on the quality and flavor of chicken soup has never been reported. Therefore, this study investigated the effects of 4 kinds of bamboo shoots on the edible quality, volatile and water-soluble flavor components of Chahua chicken soup. The results showed that adding bamboo shoots changed the sensory and nutritional quality of chicken soup. A total of 62 volatile flavor components were identified by HS-SPME-GC-MS, of which 12 were identified as characteristic volatile flavor components, and 9 were the main reasons for the flavor differences between bamboo shoot chicken soup with blank chicken soup. LC-MS found that after adding bamboo shoots, the differential water-soluble components in chicken soup significantly increased, and most of the increased components have been proven to have physiological functional activity. In conclusion, adding bamboo shoots improved the nutritional and sensory quality, and changed the flavor components of chicken soup.
RESUMEN
The present study used acetic acid, sodium hydroxide, and pepsin extract acid-soluble collagen (ASC), alkali-soluble collagen (ALSC), and pepsin-soluble collagen (PSC) from the bones of spent-hens, and the effects of three extraction methods on the characteristics, processing properties, antioxidant properties and acceptability of chicken bone collagen were compared. The results showed that the extraction rates of ASC, ALSC and PSC extracted from bones of spent-hens were 3.39%, 2.42% and 9.63%, respectively. The analysis of the amino acid composition, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Fourier transform infrared spectroscopy (FTIR), and ultraviolet full spectrum showed that the collagen extracted by the three methods had typical collagen characteristics and stable triple-helix structure, but the triple helical structure of PSC is more stable, and acid and alkaline extraction seems to have adverse effects on the secondary structure of chicken bone collagen. Differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) scanning showed that PSC had higher thermal stability and more regular, loose, and porous microstructure. In addition, PSC has good processing properties, in vitro antioxidant activity, and organoleptic acceptability. Therefore, enzymatic hydrolysis was still one of the best methods to prepare collagen from bones of spent-hens, and enzyme-soluble collagen has wider application prospects in functional food and medicine and also provides an effective way for the high-value comprehensive utilization of waste chicken bone by-products.
RESUMEN
Polysaccharides including water-soluble fraction (W), 1,2-Cyclohexanediaminetetraacetic acid (CDTA)-soluble fraction (CA), sodium carbonate (Na2CO3)-soluble fraction (SC), 1 M potassium hydroxide (KOH)-soluble fractions (PH1), and 4 M KOH-soluble fraction (PH4) were successively extracted from Dendrocalamus brandisii bamboo shoot shells using water, CDTA, Na2CO3, and KOH solution. The analytical methods were employed to initially identify the structural characteristics of the five polysaccharide fractions, and their antioxidant capacities in vitro were determined. According to the data, the average molecular weight of the five polysaccharide fractions was between 4 816 and 993 935 Da. In all four types (CA, SC, PH1, and PH4), xylose was the most abundant monosaccharide, especially in PH1 and PH4. Both PH1 and PH4 were found to contain 1,4-ß-d-Xylp as their main chain, as determined by nuclear magnetic resonance (NMR) spectroscopy. Additional research into CA and SC's antioxidant potential is required since they both showed potent in vitro antioxidant activities.
RESUMEN
Camellia fascicularis is a unique plant rich in bioactive components. However, the isolation of the active substances in C. fascicularis leaves via sequential extraction with solvents of different polarity and the determination of their antioxidant and antitumor activities have not been reported. In this study, the total methanol extract of C. fascicularis leaves was sequentially extracted with different polar solvents, and the corresponding petroleum ether extract (PEE), ethyl acetate extract (EAE), and water extract (WE) were analyzed for their contents in active substances such as flavonoids, polyphenols, polysaccharides, and saponins. The antioxidant ability of the polar extracts was investigated by determining their reducing power and the radical scavenging rate on 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and hydroxyl radicals, and CCK-8 and Annexin-FITC/propidium iodide staining assays were conducted to investigate their inhibitory effects on HCCLM6 and HGC27 tumor cells. The results showed that PEE had a high saponin content of 197.35 ± 16.21 mg OAE/g, while EAE and WE exhibited a relatively higher polysaccharide content of 254.37 ± 1.99 and 373.27 ± 8.67 mg GE/g, respectively. The EAE demonstrated the greatest reducing power and the strongest clearing abilities on ABTS and DPPH radicals with respective EC50 values of 343.45 ± 20.12 and 14.07 ± 0.06 µg/ml. Moreover, the antitumor ability of the different polar extracts was dose-dependent, with WE showing the most potent inhibitory ability against HCCLM6 and HGC27 cells.
RESUMEN
The objective of the research was to investigate the digestion and fecal fermentation characteristics of the flowers of Juglans regia (FJR), by using in vitro simulated digestion model (oral, gastric, and intestine) as well as colonic fermentation. As a result, the contents of most active substances and functional activities of FJR were decreased as the digestion proceeded, and showed a trend of first increasing and then decreasing in the fecal fermentation phase. In the oral digestion phase, the total phenolic and total flavonoid contents were released most with the values of 11.43 and 9.41 µg/mg, respectively. While in the gastric digestion phase, the antioxidant abilities, α-glucosidase and α-amylase inhibitory abilities were the weakest. By using high-performance liquid chromatography, 13 phenolic acids and 3 flavonoids were detected. Of these, the highest number of identified compounds were found in the undigested and the oral digestion stages, which were mainly salicylic acid, epicatechin, 3,5-dihydroxybenoic acid, vanillic acid, and protocatechuic acid. However, great losses were observed during the gastric and intestinal digestion stages, only epicatechin, salicylic acid, and protocatechuic acid were found. Surprisingly, fecal fermentation released more abundant phenolic substances compared to gastric and intestinal digestion. Additionally, FJR reduced the pH values in the colonic fermentation system, significantly promoted the production of short-chain fatty acids, and regulated the microbe community structure by improving the community richness of beneficial microbiota. This indicated that FJR had the benefit to improve the microorganismal environment in the intestine. Further Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that FJR could suppress the metabolic pathways related to diseases, such as infectious diseases, metabolic diseases and neurodegenerative diseases. In conclusion, although the bioactivities of FJR decreased significantly after in vitro gastrointestinal digestion and fecal fermentation, it still maintained certain antioxidant and hypoglycemic ability in vitro. This study described the detailed changes in the active compounds and bioactivities of FJR during in vitro gastrointestinal digestion and fecal fermentation, and its effects on microbiota composition and SCFAs levels in feces. Our results revealed the potential health benefits of FJR, and could provide a reference for its further research and development.
RESUMEN
The ultrasonic-assisted extraction of polysaccharides from Camellia fascicularis (PCF) was optimized using response surface methodology. After separation and purification with DEAE-52 cellulose and Sephadex G-200 glucan gel columns, the purified polysaccharide components of PCFa-1 and PCFc-1 were analyzed for their structural characterization, antioxidant and anti-tumor activities in vitro. The results indicated that liquid to material ratio of 42 mL/g, ultrasonic time of 53 min, ultrasonic temperature of 73 °C, and ultrasonic power of 215 W were the optimum extraction conditions for PCF with maximum yields (4.05 %). PCFa-1 and PCFc-1 contained 5.88 % and 9.58 % uronic acid content, with 7.53 and 108.91 kDa of average molecular weights, respectively. The PCFa-1 was mainly constituted of galactose, arabinose, and glucose, while PCFc-1 was primarily composed of arabinose, glucose, galacturonic acid, and rhamnose. Fourier transform infrared spectra revealed that PCFa-1 and PCFc-1 contained typical polysaccharide bands. Scanning electron microscopy showed that the surface of PCFa-1 and PCFc-1 were irregular and clumpy structures. Nuclear magnetic resonance showed that PCFa-1 and PCFc-1 were mainly α-glycosidic bond conformation. Furthermore, the PCFc-1 showed better antioxidant capacities than PCFa-1 against hydroxyl, DPPH, and ABTS radicals and exhibited more potent toxicity on A549 and HepG2 cells. These research results suggested that PCF, especially PCFc-1, possesses great potential as natural antioxidants and anti-tumor drugs.
Asunto(s)
Antioxidantes , Camellia , Antioxidantes/química , Arabinosa , Polisacáridos/química , GlucosaRESUMEN
The integrity of the packaging of a liquid foodstuff makes it difficult to detect spoilage. Therefore, it is important to develop a sensitive, fast and real-time material for liquid food detection. CMC, as lignocellulose derivatives and starch are widely used in the food industry. In this study, starch films with pH-responsive properties are successfully prepared from full-component starch and corn amylopectin (CA) by adding CMC. The effects of CMC on the mechanical properties, morphology characteristics, physical and chemical structures, stability and pH responsiveness of the starch films are analyzed. The starch/CMC-1.0 g composite films display good electrical conductivity and reduce the resistance of the composite film by two orders of magnitude. The composite films have pH response ability; in the simulation of orange juice spoilage experiment, the CA/CMC composite film has a more sensitive current response and was more suitable for the application to liquid food quality detection. Additionally, the starch/CMC composite films have potential applications for rapid detection and real-time monitoring of the safety of liquid food.
RESUMEN
In this study, the walnut flowers were fermented using five different probiotics, including two Lactobacillus plantarum, one Lactobacillus bulgaricus, one Lactobacillus casei, and one Lactobacillus rhamnosus. The chemical compositions, antioxidant capacities, and α-glucosidase inhibitory abilities of walnut flowers during fermentation processes were evaluated. The results showed that all the active compounds and bioactivities of the walnut flowers were significantly decreased after 7 days of fermentation, whereas a short-term fermentation (1-3 days) enhanced their bioactivities. Compared to the unfermented sample, L. plantarum (ATCC 8014) and L. rhamnosus (ATCC 53013) increased the ABTS (1.22 and 1.30 times higher) and DPPH radical scavenging activities (up to 1.23 and 1.04 times), respectively. L. plantarum (SWFU D16), L. plantarum (ATCC 8014), and L. rhamnosus (ATCC 53013) improved the ferric reducing antioxidant power which was 110.98%, 133.16%, and 104.76% of the unfermented sample. All five probiotics promoted the α-glucosidase inhibitory ability of walnut flowers (maximum 2.18-fold increase). Three phenolic acids and five flavonoids in the fermentation broth were identified by HPLC, where catechin, epicatechin, and catechin gallate were the dominant components. HPLC results demonstrated that these compounds were degraded and transformed in varying degrees under the effects of probiotics. Taken together, a short-term probiotic fermentation could change the active compounds of the walnut flowers and improve their bioactivities. L. plantarum (ATCC 8014) and L. rhamnosus (ATCC 334) are suggested as suitable strains in producing the fermented walnut flowers. The research findings could further support the development and utilization of walnut flowers as a fermented functional food. PRACTICAL APPLICATIONS: Walnut flowers have been used as fermented food in southwestern China, but their active components and functional activities during fermentation processes are still unclear. This study found that different probiotic fermentation exerted a strong and varied influence on the chemical composition and biological activities of the walnut flowers. A short-term fermentation has significantly improved their antioxidant capacities and α-glucosidase inhibitory abilities, whereas the longer period of fermentation, caused a significant loss of both their active compounds and bioactivities. These findings are useful as a reference for the manufacturers of fermented walnut flowers in selecting suitable strains and fermentation time for their products.
Asunto(s)
Juglans , Probióticos , Antioxidantes/metabolismo , Fermentación , Flores , Probióticos/metabolismo , alfa-Glucosidasas/metabolismoRESUMEN
PURPOSE: Plant polyphenols possess beneficial functions against various diseases. This study aimed to identify phenolic ingredients in Camellia fascicularis (C. fascicularis) and investigate its possible underlying anti-inflammatory mechanism in lipopolysaccharide (LPS)-induced human monocytes (THP-1) macrophages. METHODS: C. fascicularis polyphenols (CFP) were characterized by ultra-performance liquid chromatography (UPLC) combined with quadrupole-time-of-flight mass/mass spectrometry (Q-TOF-MS/MS). The THP-1 cells were differentiated into macrophages under the stimulation of phorbol 12-myristate 13-acetate (PMA) and then treated with LPS to build a cellular inflammation model. The cell viability was detected by CCK-8 assay. The levels of reactive oxygen species (ROS) were assessed by flow cytometry. The secretion and expression of inflammatory cytokines were tested by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR). In addition, the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways were analyzed by Western blotting. RESULTS: Twelve phenolic constituents including (-)-epicatechin, casuariin, agastachoside, etc. in CFP were identified. The CCK-8 assay showed that CFP exhibited no significant cytotoxicity between 100 and 300 µg/mL. After treated with CFP, the release of ROS was significantly suppressed. CFP inhibited inflammation in macrophages by attenuating the polarization of LPS-induced THP-1 macrophages, down-regulating the expression of the pro-inflammatory cytokines IL-6, IL-1ß and TNF-α, and up-regulating the expression of the anti-inflammatory cytokine IL-10. Western blotting experiments manifested that CFP could markedly inhibit the phosphorylation of p65, ERK and JNK, thereby suppressing the activation of NF-κB and MAPK signaling pathways. CONCLUSION: These findings indicated that CFP exerted anti-inflammatory activity by inhibiting the activation NF-κB and MAPK pathways which may induce the secretion of pro-inflammatory cytokines. This study offers a reference for C. fascicularis as the source of developing natural, safe anti-inflammatory agents in the future.
RESUMEN
Plumbagin (PLB) is a naphthoquinone endowed with potential medicinal properties, including anticancer activities. We evaluated the effects of PLB on the viability, cell cycle, autophagy, and apoptosis of endometrial carcinoma Ishikawa cells. The proliferation of cells was significantly inhibited by PLB at 0, 8, 10, and 12 µM. By up regulating the expression of p53 and p21, PLB could block the cell cycle in G2/M phase and down regulate cyclin dependent kinase. The apoptosis in the cancer cells was characterized by noticeable chromatin edge collection, nuclear membrane expansion, and vacuolization. PLB could significantly induce autophagy in cells, and its inhibition ability and apoptosis induction were weakened by the autophagy inhibitor SBI-0206965. Our study suggested that PLB may exert anticancer effects by abrogating PI3K/Akt pathway, which recommends it as a promising future phytotherapeutic candidate for EC treatment.
Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias Endometriales/tratamiento farmacológico , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Naftoquinonas/farmacología , Transducción de Señal/efectos de los fármacos , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismoRESUMEN
Carboxymethyl cellulose, a hydrophobic derivative from cellulose that can be prepared from different biomass, has been widely applied in food, medicine, chemical, and other industries. In this work, carboxymethyl cellulose was used as the additive to improve the hydrophobicity and strength of carboxylated starch film, which is prepared from starch catalyzed by bio-α-amylase. This study investigated the effects of different bio-α-amylase dosages (starch 0.5%, starch 1%) and different activation times (10, 30 min) on starch to prepare the carboxylated starch. The effects of different carboxymethyl cellulose content on the carboxylated starch film were investigated by analysis viscosity, fourier-transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, x-ray powder diffraction, scanning electron microscope, and contact angle. The results showed that preparing carboxylated starch using activated starch increased the carboxyl content, which could improve the effectiveness of the activated enzyme compared to prolonging the activation time. The carboxyl starch prepared by enzyme catalysis had a lower gelatinization temperature, and enzyme activation destroyed the crystallization area of the starch, thus facilitating the carboxylation reaction. The addition of 15% carboxymethyl cellulose improved the mechanical properties of the prepared film with maximum tensile strength of 44.8 MPa. Carboxymethyl cellulose effectively improved the hydrophobicity of the starch film with the addition amount of 10-30%, while hydrophobic property was stable at 66.8° when the addition amount was exceeded to 35%. In this work, it can be found that carboxymethyl cellulose improve the mechanical and hydrophobic properties of starch film, laying the foundation for the application of carboxylated starch materials.
RESUMEN
The street vended foods (SVF) are very popular in China, particularly in highly adolescents populated regions such as schools. Food quality is a critical global issue, but there are few studies describe the quality assessment of SVF. In this study, the quality of SVF around a university in Kunming was evaluated, including the microbial quality, proximate composition, oil quality, and heavy metal content. Microbial results showed that the aerobic plate count (APC) and Escherichia coli (E. coli) counts ranged from 1.94 to 7.43 log CFU/g or ml, and 0.53 to 1.48 log CFU/g or ml, respectively. A portion of fried snack samples exceed the standard limit of acid value (AV) and peroxide value (POV), and the same result was observed in carbonyl group value (CGV), thiobarbituric acid (TBA) value, viscosity, and conductivity. The proximate composition of the fried snack samples varied widely, while the fat content was generally higher. The heavy metal analysis showed most samples met the safety standards, with the content of 12-51, 1-19, 12-73, and 11-88 µg/kg for As, Hg, Cd, and Pb, respectively. In conclusion, although the overall results of this study were satisfying, more attention should be given to the quality of SVF. Consequently, there is a need for additional measures to protect consumers, particularly young adults in college, from foodborne disease.