Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nano Lett ; 20(8): 5837-5843, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32628851

RESUMEN

Grain boundaries (GBs) are ubiquitous in solids and have been of central importance in understanding the nature of polycrystals. In addition to their classical roles, topological insulators (TIs) offer a chance to realize GBs hosting distinct topological states that can be controlled by their crystal symmetries. However, such roles of crystalline symmetry in two-dimensional (2D) TIs have not been definitively measured yet. Here, we present the first direct evidence of a symmetry-enforced metallic state along a GB in 1T'-MoTe2, a prototypical 2D TI. Using scanning tunneling microscopy, we show a metallic state along a GB with nonsymmorphic lattice symmetry and its absence along another boundary with symmorphic symmetry. Our atomistic simulations demonstrate in-gap Weyl semimetallic states for the former, whereas they demonstrate gapped states for the latter, explaining our observation well. The observed metallic state, tightly linked to its crystal symmetry, can be used to create a stable conducting nanowire inside TIs.

2.
Phys Chem Chem Phys ; 21(43): 24206-24211, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31660566

RESUMEN

We explore the oxidation of a single layer of black phosphorus using ab initio density functional theory calculations. We search for the equilibrium structures of phosphorene oxides, POx with various oxygen concentrations x (0 ≤ x ≤ 1). By evaluating the formation energies with diverse configurations and their vibrational properties for each of various x values, we identify a series of stable oxidized structures with x and confirm that the oxidation occurs naturally. We also find that oxidation makes some modes from the P-O bonds and P-P bonds IR-active implying that the infrared spectra can be used to determine the degree of oxidation of phosphorene. Our electronic structure calculations reveal that the fully oxidized phosphorene (PO) has a direct band gap of 0.83 eV similar to the pristine phosphorene. Intriguingly, the PO possesses two nonsymmorphic symmetries with the inversion symmetry broken, guaranteeing symmetry-protected band structures including the band degeneracy and four-fold degenerate Dirac points. Our results provide an important guide in the search for the rare example of a Dirac semimetal with a higher level of degeneracy, giving significant insight into the relations between the symmetry of the lattice and band topology of electrons.

3.
Phys Chem Chem Phys ; 21(29): 15932-15939, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31094381

RESUMEN

We present a new approach based on static density functional theory (DFT) to describe paramagnetic manganese oxides, representative paramagnetic Mott insulators. We appended spin noncollinearity and a canonical ensemble to the magnetic sampling method (MSM), which is one of the supercell approaches based on the disordered local moment model. The combination of the noncollinear MSM (NCMSM) with DFT+U represents a highly favorable computational method called NCMSM+U to accurately determine the paramagnetic properties of MnO with moderate numerical cost. The effects of electron correlations and spin noncollinearity on the properties of MnO were also investigated. We found that the spin noncollinearity plays an important role in determining the detailed electronic profile and precise energetics of paramagnetic MnO. Our results illustrate that the NCMSM+U approach may be used for insulating materials as an alternative to the ab initio framework of dynamic mean field theory based on DFT in the simulation of the room-temperature paramagnetic properties.

4.
Nano Lett ; 18(8): 4748-4754, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29979881

RESUMEN

Thermoelectric device is a promising next-generation energy solution owing to its capability to transform waste heat into useful electric energy, which can be realized in materials with high electric conductivities and low thermal conductivities. A recently synthesized silicon allotrope of Si24 features highly anisotropic crystal structure with nanometer-sized regular pores. Here, based on first-principles study without any empirical parameter we show that the slightly doped Si24 can provide an order-of-magnitude enhanced thermoelectric figure of merit at room temperature, compared with the cubic diamond phase of silicon. We ascribe the enhancement to the intrinsic nanostructure formed by the nanopore array, which effectively hinders heat conduction while electric conductivity is maintained. This can be a viable option to enhance the thermoelectric figure of merit without further forming an extrinsic nanostructure. In addition, we propose a practical strategy to further diminish the thermal conductivity without affecting electric conductivity by confining rattling guest atoms in the pores.

5.
Small ; 14(7)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29251426

RESUMEN

Various strategies for combination therapy to overcome current limitations in cancer therapy have been actively investigated. Among them, simultaneous delivery of multiple drugs is a subject of high interest due to anticipated synergistic effect, but there have been difficulties in designing and developing effective nanomaterials for this purpose. In this work, dual-pore coexisting hybrid porous silica nanoparticles are developed through Volmer-Weber growth pathway for efficient co-delivery of gene and anticancer drug. Based on the different pore sizes (2-3 and 40-45 nm) and surface modifications of the core and branch domains, loading and controlled release of gene and drug are achieved by appropriate strategies for each environment. With excellent loading capacity and low cytotoxicity of the present platform, the combinational cancer therapy is successfully demonstrated against human cervical cancer cell line. Through a series of quantitative analyses, the excellent gene-chemo combinational therapeutic efficiency is successfully demonstrated. It is expected that the present nanoparticle will be applicable to various biomedical fields that require co-delivery of small molecule and nucleic acid.


Asunto(s)
Antineoplásicos/química , Doxorrubicina/química , Portadores de Fármacos/química , Nanopartículas/química , Dióxido de Silicio/química , Humanos
6.
Nanotechnology ; 29(47): 475604, 2018 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-30191889

RESUMEN

A therapeutic reduced graphene oxide (RGO) is synthesized by using fucoidan (Fu) as the reducing and surface functionalizing agent. The synthesized Fu-RGO exhibits promising characteristics for therapeutic applications such as high dispersity in aqueous media, biocompatibility, selective cytotoxicity to cancer cells, high loading capacity of the anticancer drug, and photothermal conversion effect. Therefore, Fu-GO is successfully harnessed as a combinatorial cancer treatment platform through bio-functional (Fu), chemo (doxorubicin (Dox)) and photothermal (RGO with near-infrared irradiation) modalities.


Asunto(s)
Antineoplásicos/farmacología , Portadores de Fármacos/farmacología , Grafito/farmacología , Neoplasias/terapia , Polisacáridos/farmacología , Antibióticos Antineoplásicos/farmacología , Antineoplásicos/química , Terapia Combinada/métodos , Doxorrubicina/química , Doxorrubicina/farmacología , Portadores de Fármacos/química , Liberación de Fármacos , Grafito/química , Células HEK293 , Células HeLa , Humanos , Hipertermia Inducida/métodos , Rayos Infrarrojos , Oxidación-Reducción , Óxidos/química , Óxidos/farmacología , Polisacáridos/química , Sustancias Reductoras/química , Sustancias Reductoras/farmacología
7.
Phys Chem Chem Phys ; 17(7): 5072-7, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25597425

RESUMEN

Hexagonal boron nitride sheets have been noted especially for their enhanced properties as substrates for sp(2) carbon-based nanodevices. To evaluate whether such enhanced properties would be retained under various realistic conditions, we investigate the structural and electronic properties of semiconducting carbon nanotubes on perfect and defective hexagonal boron nitride sheets under an external electric field as well as with a metal impurity, using density functional theory. We verify that the use of a perfect hexagonal boron nitride sheet as a substrate indeed improves the device performances of carbon nanotubes, compared with the use of conventional substrates such as SiO2. We further show that even the hexagonal boron nitride with some defects can show better performance as a substrate. Our calculations, on the other hand, also suggest that some defective boron nitride layers with a monovacancy and a nickel impurity could bring about poor device behavior since the imperfections impair electrical conductivity due to residual scattering under an applied electric field.

8.
Adv Sci (Weinh) ; 11(35): e2404590, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39010673

RESUMEN

Recently, lipid nanoparticles (LNPs)-based mRNA delivery has been approved by the FDA for SARS-CoV-2 vaccines. However, there are still considerable points for improvement in LNPs. Especially, local administration of LNPs-formulated mRNA can cause off-target translation of mRNA in distal organs which can induce unintended adverse effects. With the hypothesis that large and rigid nanoparticles can be applied to enhance retention of nanoparticles at the injection site, a polyethyleneimine (PEI)-coated porous silica nanoparticles (PPSNs)-based mRNA delivery platform is designed. PPSNs not only facilitate localized translation of mRNA at the site of injection but also prolonged protein expression. It is further demonstrated that the development of a highly efficacious Zika virus (ZIKV) vaccine using mRNA encoding full-length ZIKV pre-membrane (prM) and envelope (E) protein delivered by PPSNs. The ZIKV prME mRNA-loaded PPSNs vaccine elicits robust immune responses, including high levels of neutralizing antibodies and ZIKV E-specific T cell responses in C57BL/6 mice. Moreover, a single injection of prME-PPSNs vaccine provided complete protection against the ZIKV challenge in mice.


Asunto(s)
Ratones Endogámicos C57BL , Nanopartículas , Dióxido de Silicio , Vacunas Virales , Infección por el Virus Zika , Virus Zika , Vacunas de ARNm , Animales , Dióxido de Silicio/química , Ratones , Nanopartículas/química , Virus Zika/inmunología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/prevención & control , Vacunas de ARNm/inmunología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Modelos Animales de Enfermedad , Porosidad , Femenino , ARN Mensajero/inmunología , ARN Mensajero/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología
9.
ACS Nano ; 18(12): 8768-8776, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38488038

RESUMEN

In this work, we demonstrate the formation and electronic influence of lateral heterointerfaces in FeSn containing Kagome and honeycomb layers. Lateral heterostructures offer spatially resolved property control, enabling the integration of dissimilar materials and promoting phenomena not typically observed in vertical heterostructures. Using the molecular beam epitaxy technique, we achieve a controllable synthesis of lateral heterostructures in the Kagome metal FeSn. With scanning tunneling microscopy/spectroscopy in conjunction with first-principles calculations, we provide a comprehensive understanding of the bonding motif connecting the Fe3Sn-terminated Kagome and Sn2-terminated honeycomb surfaces. More importantly, we reveal a distance-dependent evolution of the electronic states in the vicinity of the heterointerfaces. This evolution is significantly influenced by the orbital character of the flat bands. Our findings suggest an approach to modulate the electronic properties of the Kagome lattice, which should be beneficial for the development of future quantum devices.

10.
ACS Appl Mater Interfaces ; 16(29): 37555-37568, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39007297

RESUMEN

The chemokine (C-X-C) motif ligand 9 (CXCL9) is one of the lymphocyte-traffic-involved chemokines. Despite the immunotherapeutic potential of CXCL9 for recruiting effector T cells (cluster of differentiation 4+ (CD4+) and CD8+ T cells) and natural killer cells (NK cells) around the tumors, practical applications of CXCL9 have been limited because of its immune toxicity and lack of stability in vivo. To overcome these limitations, we designed and synthesized Pt-Te nanorods (PtTeNRs), which exhibited excellent photothermal conversion efficiency with stable CXCL9 payload characteristics under the physiological conditions of in vivo environments. We developed a CXCL9-based immunotherapy strategy by utilizing the unique physicochemical properties of developed PtTeNRs. The investigation revealed that the PtTeNR-loaded CXCL9 was effectively accumulated in the tumor, subsequently released in a sustained manner, and successfully recruited effector T cells for immunotherapy of the designated tumor tissue. In addition, a synergistic effect was observed between the photothermal (PT) therapy and antiprogrammed cell death protein 1 (aPD-1) antibody. In this study, we demonstrated that PtTeNR-based CXCL9, PT, and aPD-1 antibody trimodal therapy delivers an outstanding tumor suppression effect in all stages of cancer, including phases 1-4 and tumor recurrence.


Asunto(s)
Inmunidad Adaptativa , Inmunidad Innata , Inmunoterapia , Nanotubos , Animales , Ratones , Inmunidad Innata/efectos de los fármacos , Nanotubos/química , Inmunidad Adaptativa/efectos de los fármacos , Humanos , Terapia Fototérmica , Quimiocina CXCL9/química , Platino (Metal)/química , Platino (Metal)/farmacología , Línea Celular Tumoral , Neoplasias/terapia , Neoplasias/inmunología , Ratones Endogámicos BALB C , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA