Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 623(7986): 397-405, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914940

RESUMEN

Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.


Asunto(s)
Encéfalo , Colesterol , Células Madre Pluripotentes Inducidas , Microglía , Células-Madre Neurales , Neurogénesis , Organoides , Animales , Humanos , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Microglía/citología , Microglía/metabolismo , Organoides/citología , Organoides/metabolismo , Colesterol/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Axones , Proliferación Celular , Ésteres/metabolismo , Gotas Lipídicas/metabolismo
2.
Semin Cell Dev Biol ; 116: 10-15, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293232

RESUMEN

Neuron-glial interactions shape neural circuit establishment, refinement and function. One of the key neuron-glial interactions takes place between axons and oligodendroglial precursor cells. Interactions between neurons and oligodendrocyte precursor cells (OPCs) promote OPC proliferation, generation of new oligodendrocytes and myelination, shaping myelin development and ongoing adaptive myelin plasticity in the brain. Communication between neurons and OPCs can be broadly divided into paracrine and synaptic mechanisms. Following the Nobel mini-symposium "The Dark Side of the Brain" in late 2019 at the Karolinska Institutet, this mini-review will focus on the bright and dark sides of neuron-glial interactions and discuss paracrine and synaptic interactions between neurons and OPCs and their malignant counterparts.


Asunto(s)
Vaina de Mielina/fisiología , Neuroglía/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales , Humanos
4.
Brain ; 138(Pt 11): 3345-59, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26220942

RESUMEN

Tauopathies, such as Alzheimer's disease, some cases of frontotemporal dementia, corticobasal degeneration and progressive supranuclear palsy, are characterized by aggregates of the microtubule-associated protein tau, which are linked to neuronal death and disease development and can be caused by mutations in the MAPT gene. Six tau isoforms are present in the adult human brain and they differ by the presence of 3(3R) or 4(4R) C-terminal repeats. Only the shortest 3R isoform is present in foetal brain. MAPT mutations found in human disease affect tau binding to microtubules or the 3R:4R isoform ratio by altering exon 10 splicing. We have differentiated neurons from induced pluripotent stem cells derived from fibroblasts of controls and patients with N279K and P301L MAPT mutations. Induced pluripotent stem cell-derived neurons recapitulate developmental tau expression, showing the adult brain tau isoforms after several months in culture. Both N279K and P301L neurons exhibit earlier electrophysiological maturation and altered mitochondrial transport compared to controls. Specifically, the N279K neurons show abnormally premature developmental 4R tau expression, including changes in the 3R:4R isoform ratio and AT100-hyperphosphorylated tau aggregates, while P301L neurons are characterized by contorted processes with varicosity-like structures, some containing both alpha-synuclein and 4R tau. The previously unreported faster maturation of MAPT mutant human neurons, the developmental expression of 4R tau and the morphological alterations may contribute to disease development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Proteínas tau/genética , Adulto , Anciano , Estudios de Casos y Controles , Línea Celular , Células Cultivadas , Femenino , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/patología , Recién Nacido , Masculino , Microscopía Confocal , Microtúbulos/metabolismo , Persona de Mediana Edad , Neuronas/citología , Neuronas/patología , Técnicas de Placa-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tauopatías , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
5.
Eur J Neurosci ; 42(7): 2372-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26286226

RESUMEN

The transition to scientific independence as a principal investigator (PI) can seem like a daunting and mysterious process to postdocs and students - something that many aspire to while at the same time wondering how to achieve this goal and what being a PI really entails. The FENS Kavli Network of Excellence (FKNE) is a group of young faculty who have recently completed this step in various fields of neuroscience across Europe. In a series of opinion pieces from FKNE scholars, we aim to demystify this process and to offer the next generation of up-and-coming PIs some advice and personal perspectives on the transition to independence, starting here with guidance on how to get hired to your first PI position. Rather than providing an exhaustive overview of all facets of the hiring process, we focus on a few key aspects that we have learned to appreciate in the quest for our own labs: What makes a research programme exciting and successful? How can you identify great places to apply to and make sure your application stands out? What are the key objectives for the job talk and the interview? How do you negotiate your position? And finally, how do you decide on a host institute that lets you develop both scientifically and personally in your new role as head of a lab?


Asunto(s)
Investigación Biomédica , Selección de Profesión , Neurociencias , Selección de Personal , Investigadores , Europa (Continente) , Guías como Asunto , Humanos
6.
J Neurosci ; 33(30): 12407-22, 2013 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-23884946

RESUMEN

Stem cell lines that faithfully maintain the regional identity and developmental potency of progenitors in the human brain would create new opportunities in developmental neurobiology and provide a resource for generating specialized human neurons. However, to date, neural progenitor cultures derived from the human brain have either been short-lived or exhibit restricted, predominantly glial, differentiation capacity. Pluripotent stem cells are an alternative source, but to ascertain definitively the identity and fidelity of cell types generated solely in vitro is problematic. Here, we show that hindbrain neuroepithelial stem (hbNES) cells can be derived and massively expanded from early human embryos (week 5-7, Carnegie stage 15-17). These cell lines are propagated in adherent culture in the presence of EGF and FGF2 and retain progenitor characteristics, including SOX1 expression, formation of rosette-like structures, and high neurogenic capacity. They generate GABAergic, glutamatergic and, at lower frequency, serotonergic neurons. Importantly, hbNES cells stably maintain hindbrain specification and generate upper rhombic lip derivatives on exposure to bone morphogenetic protein (BMP). When grafted into neonatal rat brain, they show potential for integration into cerebellar development and produce cerebellar granule-like cells, albeit at low frequency. hbNES cells offer a new system to study human cerebellar specification and development and to model diseases of the hindbrain. They also provide a benchmark for the production of similar long-term neuroepithelial-like stem cells (lt-NES) from pluripotent cell lines. To our knowledge, hbNES cells are the first demonstration of highly expandable neuroepithelial stem cells derived from the human embryo without genetic immortalization.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Madre Embrionarias/citología , Feto/citología , Células-Madre Neurales/citología , Células Neuroepiteliales/citología , Rombencéfalo/citología , Animales , Trasplante de Tejido Encefálico/métodos , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Línea Celular , Linaje de la Célula , Cerebelo/citología , Técnicas de Cocultivo , Factor de Crecimiento Epidérmico/farmacología , Células Nutrientes , Femenino , Factor 2 de Crecimiento de Fibroblastos/farmacología , Humanos , Masculino , Ratones , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Trasplante de Células Madre/métodos
7.
Sci Rep ; 14(1): 4091, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374232

RESUMEN

In the central nervous system, oligodendrocyte precursor cells (OPCs) proliferate and differentiate into myelinating oligodendrocytes throughout life, allowing for ongoing myelination and myelin repair. With age, differentiation efficacy decreases and myelin repair fails; therefore, recent therapeutic efforts have focused on enhancing differentiation. Many cues are thought to regulate OPC differentiation, including neuronal activity, which OPCs can sense and respond to via their voltage-gated ion channels and glutamate receptors. However, OPCs' density of voltage-gated ion channels and glutamate receptors differs with age and brain region, and correlates with their proliferation and differentiation potential, suggesting that OPCs exist in different functional cell states, and that age-associated states might underlie remyelination failure. Here, we use whole-cell patch-clamp to investigate whether clemastine and metformin, two pro-remyelination compounds, alter OPC membrane properties and promote a specific OPC state. We find that clemastine and metformin extend the window of NMDAR surface expression, promoting an NMDAR-rich OPC state. Our findings highlight a possible mechanism for the pro-remyelinating action of clemastine and metformin, and suggest that OPC states can be modulated as a strategy to promote myelin repair.


Asunto(s)
Metformina , Células Precursoras de Oligodendrocitos , Células Precursoras de Oligodendrocitos/metabolismo , Clemastina , Receptores de N-Metil-D-Aspartato/metabolismo , Metformina/farmacología , Metformina/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Diferenciación Celular/fisiología
8.
Cell Rep Med ; 4(9): 101175, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37652017

RESUMEN

Synapse loss correlates with cognitive decline in Alzheimer's disease (AD). Data from mouse models suggests microglia are important for synapse degeneration, but direct human evidence for any glial involvement in synapse removal in human AD remains to be established. Here we observe astrocytes and microglia from human brains contain greater amounts of synaptic protein in AD compared with non-disease controls, and that proximity to amyloid-ß plaques and the APOE4 risk gene exacerbate this effect. In culture, mouse and human astrocytes and primary mouse and human microglia phagocytose AD patient-derived synapses more than synapses from controls. Inhibiting interactions of MFG-E8 rescues the elevated engulfment of AD synapses by astrocytes and microglia without affecting control synapse uptake. Thus, AD promotes increased synapse ingestion by human glial cells at least in part via an MFG-E8 opsonophagocytic mechanism with potential for targeted therapeutic manipulation.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Animales , Humanos , Ratones , Astrocitos , Ingestión de Alimentos , Sinapsis
9.
Front Cell Dev Biol ; 10: 968341, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247014

RESUMEN

Focalised hypoxia is widely prevalent in diseases such as stroke, cardiac arrest, and dementia. While in some cases hypoxia improves cellular functions, it mostly induces or exacerbates pathological changes. The lack of methodologies that can simulate focal acute hypoxia, in either animal or cell culture, impedes our understanding of the cellular consequences of hypoxia. To address this gap, an electrochemical localised oxygen scavenging system (eLOS), is reported, providing an innovative platform for spatiotemporal in vitro hypoxia modulation. The electrochemical system is modelled showing O2 flux patterns and localised O2 scavenging and hypoxia regions, as a function of distance from the electrode and surrounding flux barriers, allowing an effective focal hypoxia tool to be designed for in vitro cell culture study. O2 concentration is reduced in an electrochemically defined targeted area from normoxia to hypoxia in about 6 min depending on the O2-flux boundaries. As a result, a cell culture-well was designed, where localised O2 scavenging could be induced. The impact of localised hypoxia was demonstrated on human neural progenitor cells (hNPCs) and it was shown that miniature focal hypoxic insults can be induced, that evoke time-dependent HIF-1α transcription factor accumulation. This transcription is "patterned" across the culture according to the electrochemically induced spatiotemporal hypoxia gradient. A basic lacunar infarct model was also developed through the application of eLOS in a purpose designed microfluidic device. Miniature focal hypoxic insults were induced in cellular processes of fully oxygenated cell bodies, such as the axons of human cortical neurons. The results demonstrate experimentally that localised axonal hypoxic stress can lead to significant increase of neuronal death, despite the neurons remaining at normoxia. This suggests that focal hypoxic insult to axons alone is sufficient to impact surrounding neurons and may provide an in vitro model to study the impact of microinfarcts occurring in the deep cerebral white matter, as well as providing a promising tool for wider understanding of acute hypoxic insults with potential to uncover its pathophysiology in multiple diseases.

10.
Front Cell Dev Biol ; 10: 1118466, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684444

RESUMEN

[This corrects the article DOI: 10.3389/fcell.2022.968341.].

11.
J Comp Neurol ; 530(6): 871-885, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34599848

RESUMEN

Myelination allows for the regulation of conduction velocity, affecting the precise timing of neuronal inputs important for the development and function of brain circuits. In turn, myelination may be altered by changes in experience, neuronal activity, and vesicular release, but the links between sensory experience, corresponding neuronal activity, and resulting alterations in myelination require further investigation. We thus studied the development of myelination in the Xenopus laevis tadpole, a classic model for studies of visual system development and function because it is translucent and visually responsive throughout the formation of its retinotectal system. We begin with a systematic characterization of the timecourse of early myelin ensheathment in the Xenopus retinotectal system using immunohistochemistry of myelin basic protein (MBP) along with third harmonic generation (THG) microscopy, a label-free structural imaging technique. Based on the mid-larval developmental progression of MBP expression in Xenopus, we identified an appropriate developmental window in which to assess the effects of early temporally patterned visual experience on myelin ensheathment. We used calcium imaging of axon terminals in vivo to characterize the responses of retinal ganglion cells over a range of stroboscopic stimulation frequencies. Strobe frequencies that reliably elicited robust versus dampened calcium responses were then presented to animals for 7 d, and differences in the amount of early myelin ensheathment at the optic chiasm were subsequently quantified. This study provides evidence that it is not just the presence but also to the specific temporal properties of sensory stimuli that are important for myelin plasticity.


Asunto(s)
Larva/crecimiento & desarrollo , Vaina de Mielina/fisiología , Retina/crecimiento & desarrollo , Techo del Mesencéfalo/crecimiento & desarrollo , Vías Visuales/crecimiento & desarrollo , Animales , Proteína Básica de Mielina/metabolismo , Células Ganglionares de la Retina/fisiología , Proteínas de Xenopus/metabolismo , Xenopus laevis
12.
Nat Commun ; 13(1): 2844, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606347

RESUMEN

The cerebral cortex develops from dorsal forebrain neuroepithelial progenitor cells. Following the initial expansion of the progenitor cell pool, these cells generate neurons of all the cortical layers and then astrocytes and oligodendrocytes. Yet, the regulatory pathways that control the expansion and maintenance of the progenitor cell pool are currently unknown. Here we define six basic pathway components that regulate proliferation of cortically specified human neuroepithelial stem cells (cNESCs) in vitro without the loss of cerebral cortex developmental potential. We show that activation of FGF and inhibition of BMP and ACTIVIN A signalling are required for long-term cNESC proliferation. We also demonstrate that cNESCs preserve dorsal telencephalon-specific potential when GSK3, AKT and nuclear CATENIN-ß1 activity are low. Remarkably, regulation of these six pathway components supports the clonal expansion of cNESCs. Moreover, cNESCs differentiate into lower- and upper-layer cortical neurons in vitro and in vivo. The identification of mechanisms that drive the neuroepithelial stem cell self-renewal and differentiation and preserve this potential in vitro is key to developing regenerative and cell-based therapeutic approaches to treat neurological conditions.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Células Neuroepiteliales , Diferenciación Celular/fisiología , Corteza Cerebral , Humanos , Células Madre , Telencéfalo
14.
STAR Protoc ; 2(2): 100439, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33899020

RESUMEN

Single-cell electrophysiological recordings combined with dye loading and immunohistochemistry provide unparalleled single-cell resolution of cell physiology, morphology, location, and protein expression. When correlated with bulk RNA sequencing, these data can define cell identity and function. Here, we describe a protocol to prepare acute brain slices from embryonic and postnatal mice for whole-cell patch clamp, dye loading and post-hoc immunohistochemistry, and cell isolation for bulk RNA sequencing. While we focus on oligodendrocyte precursor cells, this protocol is applicable to other brain cells. For complete details on the use and execution of this protocol, please refer to Spitzer et al. (2019).


Asunto(s)
Encéfalo , Inmunohistoquímica/métodos , Técnicas de Placa-Clamp/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Encéfalo/citología , Encéfalo/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Masculino , Ratones
15.
Science ; 374(6569): eaba6905, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34618550

RESUMEN

The brain is responsive to an ever-changing environment, enabling the organism to learn and change behavior accordingly. Efforts to understand the underpinnings of this plasticity have almost exclusively focused on the functional and underlying structural changes that neurons undergo at neurochemical synapses. What has received comparatively little attention is the involvement of activity-dependent myelination in such plasticity and the functional output of circuits controlling behavior. The traditionally held view of myelin as a passive insulator of axons is changing to one of lifelong changes in myelin, modulated by neuronal activity and experience. We review the nascent evidence of the functional role of myelin plasticity in strengthening circuit functions that underlie learning and behavior.


Asunto(s)
Encéfalo/fisiología , Aprendizaje , Memoria , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Animales , Axones/fisiología , Diferenciación Celular , Proliferación Celular , Sustancia Gris/fisiología , Humanos , Actividad Motora , Conducción Nerviosa , Plasticidad Neuronal , Células Precursoras de Oligodendrocitos/fisiología , Sustancia Blanca/fisiología
16.
Nat Neurosci ; 24(11): 1508-1521, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34711959

RESUMEN

Myelin, a lipid membrane that wraps axons, enabling fast neurotransmission and metabolic support to axons, is conventionally thought of as a static structure that is set early in development. However, recent evidence indicates that in the central nervous system (CNS), myelination is a protracted and plastic process, ongoing throughout adulthood. Importantly, myelin is emerging as a potential modulator of neuronal networks, and evidence from human studies has highlighted myelin as a major player in shaping human behavior and learning. Here we review how myelin changes throughout life and with learning. We discuss potential mechanisms of myelination at different life stages, explore whether myelin plasticity provides the regenerative potential of the CNS white matter, and question whether changes in myelin may underlie neurological disorders.


Asunto(s)
Encéfalo/fisiología , Vaina de Mielina/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sustancia Blanca/fisiología , Animales , Encéfalo/citología , Humanos , Oligodendroglía/fisiología , Sustancia Blanca/citología
19.
Front Cell Neurosci ; 14: 156, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32595455

RESUMEN

Plasticity in the central nervous system (CNS) allows for responses to changing environmental signals. While the majority of studies on brain plasticity focus on neuronal synapses, myelin plasticity has now begun to emerge as a potential modulator of neuronal networks. Oligodendrocytes (OLs) produce myelin, which provides fast signal transmission, allows for synchronization of neuronal inputs, and helps to maintain neuronal function. Thus, myelination is also thought to be involved in learning. OLs differentiate from oligodendrocyte precursor cells (OPCs), which are distributed throughout the adult brain, and myelination continues into late adulthood. This process is orchestrated by numerous cellular and molecular signals, such as axonal diameter, growth factors, extracellular signaling molecules, and neuronal activity. However, the relative importance of, and cooperation between, these signaling pathways is currently unknown. In this review, we focus on the current knowledge about myelin plasticity in the CNS. We discuss new insights into the link between this type of plasticity, learning and behavior, as well as mechanistic aspects of myelin formation that may underlie myelin plasticity, highlighting OPC diversity in the CNS.

20.
Cell Stem Cell ; 26(5): 617-619, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32386552

RESUMEN

Regenerative medicines that promote remyelination in multiple sclerosis (MS) are making the transition from laboratory to clinical trials. While animal models provide the experimental flexibility to analyze mechanisms of remyelination, here we discuss the challenges in understanding where and how remyelination occurs in MS.


Asunto(s)
Esclerosis Múltiple , Remielinización , Animales , Modelos Animales , Esclerosis Múltiple/tratamiento farmacológico , Vaina de Mielina , Oligodendroglía , Medicina Regenerativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA