Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Autoimmun ; 118: 102608, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33596533

RESUMEN

Myd88 activation is an important driver of autoimmunity. Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by exocrine gland dysfunction in combination with serious systemic disease manifestations. Myd88-dependent signaling networks remain incompletely understood in the context of pSS. The objective of this study was to establish the contribution of tissue-specific Myd88 activation to local (exocrine) and systemic pSS manifestations. To this end, we generated two novel conditional knockout pSS mouse models; one lacking Myd88 in hematopoietic cells and a second strain in which Myd88 was deleted in the stromal compartment. Spontaneous production of inflammatory mediators was altered in salivary tissue, and nephritis was diminished in both conditional knockout strains. In contrast, pulmonary inflammation was increased in mice lacking Myd88 in hematopoietic cells and was reduced when Myd88 was ablated in stromal cells. Finally, anti-nuclear autoantibodies (ANAs) were attenuated in pSS mice lacking Myd88 in immune cells. Additionally, the ANA-specific B cell repertoire was skewed in the Myd88-deficient strains. Collectively, these data demonstrate that Myd88 activation in specific cell types is essential for distinct aspects of pSS pathology.


Asunto(s)
Linfocitos B/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Síndrome de Sjögren/inmunología , Animales , Anticuerpos Antinucleares/sangre , Anticuerpos Antinucleares/inmunología , Linfocitos B/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Mediadores de Inflamación/metabolismo , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Glándulas Salivales/inmunología , Glándulas Salivales/patología , Índice de Severidad de la Enfermedad , Transducción de Señal/genética , Transducción de Señal/inmunología , Síndrome de Sjögren/sangre , Síndrome de Sjögren/diagnóstico , Síndrome de Sjögren/patología
2.
J Biol Chem ; 289(27): 18805-17, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24847051

RESUMEN

Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca(2+) flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca(2+) permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca(2+) conductance, because neither Na(+) conductance nor Ca(2+)-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca(2+) permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca(2+) permeability.


Asunto(s)
Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación del Canal Iónico , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Fenómenos Electrofisiológicos/efectos de los fármacos , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ratas , Receptores de N-Metil-D-Aspartato/química , Serina/metabolismo
3.
J Leukoc Biol ; 115(3): 497-510, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-37930711

RESUMEN

Primary Sjögren's disease (pSD) (also referred to as Sjögren's syndrome) is an autoimmune disease that primarily occurs in women. In addition to exocrine gland dysfunction, pSD patients exhibit B cell hyperactivity. B cell-intrinsic TLR7 activation is integral to the pathogenesis of systemic lupus erythematosus, a disease that shares similarities with pSD. The role of TLR7-mediated B cell activation in pSD, however, remains poorly understood. We hypothesized that age-associated B cells (ABCs) were expanded in pSD and that TLR7-stimulated ABCs exhibited pathogenic features characteristic of disease. Our data revealed that ABC expansion and TLR7 expression were enhanced in a pSD mouse model in a Myd88-dependent manner. Splenocytes from pSD mice showed enhanced sensitivity to TLR7 agonism as compared with those derived from control animals. Sort-purified marginal zone B cells and ABCs from pSD mice showed enhanced inflammatory cytokine secretion and were enriched for antinuclear autoantibodies following TLR7 agonism. Finally, IgG from pSD patient sera showed elevated antinuclear autoantibodies, many of which were secreted preferentially by TLR7-stimulated murine marginal zone B cells and ABCs. These data indicate that pSD B cells are hyperresponsive to TLR7 agonism and that TLR7-activated B cells contribute to pSD through cytokine and autoantibody production. Thus, therapeutics that target TLR7 signaling cascades in B cells may have utility in pSD patients.


Asunto(s)
Anticuerpos Antinucleares , Síndrome de Sjögren , Humanos , Ratones , Femenino , Animales , Autoanticuerpos , Receptor Toll-Like 7/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad
4.
Front Cell Dev Biol ; 12: 1434269, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39310226

RESUMEN

Primary Sjögren's disease (pSD) is a systemic autoimmune disease that has the strongest female predilection of all autoimmune diseases. The underlying mechanisms that govern this sexual dimorphism, however, remain poorly understood. We hypothesized that pSD females would exhibit more robust disease as compared to males, and that Tlr7 controls distinct disease manifestations in males and females. Using a well-established pSD mouse model, we harvested exocrine glands, and pulmonary and renal tissue from males and females and quantified the inflammation present. We then collected salivary glands, spleens, and cervical lymph nodes and performed flow cytometry to assess immune populations implicated in disease. We also harvested sera to examine total and autoreactive antibodies. Our data revealed that pSD mice displayed sex-biased disease, as pSD females showed decreased dacryoadenitis, but increased nephritis as compared to males. Moreover, females exhibited increased proportions of germinal center B cells and CD4+ activated/memory T cells in the periphery. Additionally, salivary gland immune populations were altered in a sex-dependent manner in pSD. Females with pSD also displayed elevated total and autoreactive IgG as compared to males. Additionally, splenic B cell Tlr7 expression was increased in females. We next generated pSD mice that lacked Tlr7 systemically and found that ablation of Tlr7 was primarily protective in pSD females, while Tlr7-deficient pSD males showed heightened disease. Thus, pSD mice display sex-biased disease and these dichotomous manifestations are governed by Tlr7 activation. This study identifies Tlr7 as a druggable target for pSD, and highlights the importance of studying pSD disease mechanisms in both sexes.

5.
J Neurophysiol ; 108(11): 3105-15, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22993263

RESUMEN

The activation mechanisms of recombinant N-methyl-d-aspartate receptors (NRs) have been established in sufficient detail to account for their single channel and macroscopic responses; however, the reaction mechanism of native NRs remains uncertain due to indetermination of the isoforms expressed and possible neuron-specific factors. To delineate the activation mechanism of native NRs, we examined the kinetic properties of currents generated by individual channels located at the soma of cultured rat neurons. Cells were dissociated from the embryonic cerebral cortex or hippocampus, and on-cell single channel recordings were done between 4 and 50 days in vitro (DIV). We observed two types of kinetics that correlated with the age of the culture. When we segregated recordings by culture age, we found that receptors recorded from early (4-33 DIV) and late (25-50 DIV) cultures had smaller unitary conductances but had kinetic profiles that matched closely those of recombinant 2B- or 2A-containing receptors, respectively. In addition, we examined the effects of cotransfection with postsynaptic density protein 95 or neuropilin tolloid-like protein 1 on recombinant receptors expressed in human embryonic kidney-293 cells. Our results add support to the view that neuronal cultures recapitulate the developmental patterns of receptor expression observed in the intact animal and demonstrate that the activation mechanism of somatic neuronal NRs is similar to that described for recombinant receptors of defined subunit composition.


Asunto(s)
Activación del Canal Iónico , Neuronas/fisiología , Subunidades de Proteína/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Corteza Cerebral/citología , Homólogo 4 de la Proteína Discs Large , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Hipocampo/citología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Relacionadas con Receptor de LDL , Lipoproteínas LDL/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Subunidades de Proteína/genética , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo
6.
Front Immunol ; 13: 1034336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591307

RESUMEN

Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized by chronic inflammation of exocrine tissue, resulting in loss of tears and saliva. Patients also experience many extra-glandular disease manifestations. Treatment for pSS is palliative, and there are currently no treatments available that target disease etiology. Previous studies in our lab demonstrated that MyD88 is crucial for pSS pathogenesis in the NOD.B10Sn-H2b (NOD.B10) pSS mouse model, although the way in which MyD88-dependent pathways become activated in disease remains unknown. Based on its importance in other autoimmune diseases, we hypothesized that TLR7 activation accelerates pSS pathogenesis. We administered the TLR7 agonist Imiquimod (Imq) or sham treatment to pre-disease NOD.B10 females for 6 weeks. Parallel experiments were performed in age and sex-matched C57BL/10 controls. Imq-treated pSS animals exhibited cervical lymphadenopathy, splenomegaly, and expansion of TLR7-expressing B cells. Robust lymphocytic infiltration of exocrine tissues, kidney and lung was observed in pSS mice following treatment with Imq. TLR7 agonism also induced salivary hypofunction in pSS mice, which is a hallmark of disease. Anti-nuclear autoantibodies, including Ro (SSA) and La (SSB) were increased in pSS mice following Imq administration. Cervical lymph nodes from Imq-treated NOD.B10 animals demonstrated an increase in the percentage of activated/memory CD4+ T cells. Finally, T-bet+ B cells were expanded in the spleens of Imq-treated pSS mice. Thus, activation of TLR7 accelerates local and systemic disease and promotes expansion of T-bet-expressing B cells in pSS.


Asunto(s)
Linfocitos B , Factor 88 de Diferenciación Mieloide , Síndrome de Sjögren , Receptor Toll-Like 7 , Animales , Femenino , Ratones , Adyuvantes Inmunológicos/farmacología , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Síndrome de Sjögren/genética , Síndrome de Sjögren/inmunología , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Imiquimod/farmacología
7.
Front Immunol ; 12: 692216, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381449

RESUMEN

Primary Sjögren's syndrome is an autoimmune disease that is predominantly seen in women. The disease is characterized by exocrine gland dysfunction in combination with serious systemic manifestations. At present, the causes of pSS are poorly understood. Pulmonary and renal inflammation are observed in pSS mice, reminiscent of a subset of pSS patients. A growing body of evidence indicates that inflammation mediated by Damage-Associated Molecular Patterns (DAMPs) contributes to autoimmunity, although this is not well-studied in pSS. Degraded extracellular matrix (ECM) constituents can serve as DAMPs by binding pattern-recognition receptors and activating Myd88-dependent signaling cascades, thereby exacerbating and perpetuating inflammatory cascades. The ECM components biglycan (Bgn) and decorin (Dcn) mediate sterile inflammation and both are implicated in autoimmunity. The objective of this study was to determine whether these ECM components and anti-ECM antibodies are altered in a pSS mouse model, and whether this is dependent on Myd88 activation in immune cells. Circulating levels of Bgn and Dcn were similar among pSS mice and controls and tissue expression studies revealed pSS mice had robust expression of both Bgn and Dcn in the salivary tissue, saliva, lung and kidney. Sera from pSS mice displayed increased levels of autoantibodies directed against ECM components when compared to healthy controls. Further studies using sera derived from conditional knockout pSS mice demonstrated that generation of these autoantibodies relies, at least in part, on Myd88 expression in the hematopoietic compartment. Thus, this study demonstrates that ECM degradation may represent a novel source of chronic B cell activation in the context of pSS.


Asunto(s)
Autoanticuerpos/inmunología , Matriz Extracelular/inmunología , Factor 88 de Diferenciación Mieloide/inmunología , Síndrome de Sjögren/inmunología , Animales , Biglicano/inmunología , Decorina/inmunología , Elastina/inmunología , Femenino , Riñón/inmunología , Pulmón/inmunología , Ratones Transgénicos , Factor 88 de Diferenciación Mieloide/genética , Saliva/inmunología , Glándulas Salivales/inmunología
8.
Front Immunol ; 10: 2963, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31993047

RESUMEN

Toll-like receptors (TLRs) are important mediators of chronic inflammation in numerous autoimmune diseases, although the role of these receptors in primary Sjögren's syndrome (pSS) remains incompletely understood. Previous studies in our laboratory established Myd88 as a crucial mediator of pSS, although the disease-relevant ligands and the upstream signaling events that culminate in Myd88 activation have yet to be established. The objective of this study was to identify specific Myd88-dependent TLR-related pathways that are dysregulated both locally and systemically in a mouse model of pSS [NOD.B10Sn-H2b /J (NOD.B10)]. We performed RNA-sequencing on spleens derived from NOD.B10 mice. We then harvested salivary tissue and spleens from Myd88-sufficient and deficient C57BL/10 (BL/10) and NOD.B10 mice and performed flow cytometry to determine expression of Myd88-dependent TLRs. We cultured splenocytes with TLR2 and TLR4 agonists and measured production of inflammatory mediators by ELISA. Next, we evaluated spontaneous and TLR4-mediated inflammatory cytokine secretion in NOD.B10 salivary tissue. Finally, we assessed spontaneous Myd88-dependent cytokine secretion by NOD.B10 salivary cells. We identified dysregulation of numerous TLR-related networks in pSS splenocytes, particularly those employed by TLR2 and TLR4. We found upregulation of TLRs in both the splenic and salivary tissue from pSS mice. In NOD.B10 splenic tissue, robust expression of B cell TLR1 and TLR2 required Myd88. Splenocytes from NOD.B10 mice were hyper-responsive to TLR2 ligation and the endogenous molecule decorin modulated inflammation via TLR4. Finally, we observed spontaneous secretion of numerous inflammatory cytokines and this was enhanced following TLR4 ligation in female NOD.B10 salivary tissue as compared to males. The spontaneous production of salivary IL-6, MCP-1 and TNFα required Myd88 in pSS salivary tissue. Thus, our data demonstrate that Myd88-dependent TLR pathways contribute to the inflammatory landscape in pSS, and inhibition of such will likely have therapeutic utility.


Asunto(s)
Factor 88 de Diferenciación Mieloide/inmunología , Síndrome de Sjögren/inmunología , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/inmunología , Animales , Quimiocina CCL2/genética , Quimiocina CCL2/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Interleucina-6/genética , Interleucina-6/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Factor 88 de Diferenciación Mieloide/genética , Saliva/inmunología , Síndrome de Sjögren/genética , Bazo/inmunología , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética
9.
Dev Growth Differ ; 33(6): 587-598, 1991 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37282254

RESUMEN

The sea urchin embryo is a closed metabolic system in which embryogenesis is accompanied by significant protein degradation. We report results which are consistent with a function for the ubiquitinmediated proteolytic pathway in selective protein degradation during embryogenesis in this system. Quantitative solid- and solution-phase immunochemical assays, employing anti-ubiquitin antibodies, showed that unfertilized eggs of Strongylocentrotus purpuratus have a high content of unconjugated ubiquitin (ca. 8 × 108 molecules), and also contain abundant conjugates involving ubiquitin and maternal proteins. The absolute content of ubiquitin in the conjugated form increases about 13-fold between fertilization and the pluteus larva stage; 90% or more of embryonic ubiquitin molecules are conjugated to embryonic proteins in hatched blastulae and later-stage embryos. Qualitatively similar results were obtained with embryos of Lytechinus variegatus. The results of pulse-labeling and immunoprecipitation experiments indicate that synthesis of ubiquitin in S. purpuratus is developmentally regulated, with an overall increase in synthetic rate of 12-fold between fertilization and hatching. Regulation is likely to occur at the level of translation, since others have shown that levels of ubiquitin-encoding mRNA remain virtually constant in echinoid embryos during this developmental interval. The sea urchin embryo should be a useful system for characterizing the role of ubiquitination in embryogenesis.

10.
J Gen Physiol ; 140(3): 267-77, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22891278

RESUMEN

N-methyl-D-aspartate (NMDA) receptor activation involves a dynamic series of structural rearrangements initiated by glutamate binding to glycine-loaded receptors and culminates with the clearing of the permeation pathway, which allows ionic flux. Along this sequence, three rate-limiting transitions can be quantified with kinetic analyses of single-channel currents, even though the structural determinants of these critical steps are unknown. In inactive receptors, the major permeation barrier resides at the intersection of four M3 transmembrane helices, two from each GluN1 and GluN2 subunits, at the level of the invariant SYTANLAAF sequence, known as the lurcher motif. Because the A7 but not A8 residues in this region display agonist-dependent accessibility to extracellular solutes, they were hypothesized to form the glutamate-sensitive gate. We tested this premise by examining the reaction mechanisms of receptors with substitutions in the lurcher motifs of GluN1 or GluN2A subunits. We found that, consistent with their locations relative to the proposed activation gate, A8Y decreased open-state stability, whereas A7Y dramatically stabilized open states, primarily by preventing gate closure; the equilibrium distribution of A7Y receptors was strongly shifted toward active states and resulted in slower microscopic association and dissociation rate constants for glutamate. In addition, for both A8- and A7-substituted receptors, we noticed patterns of kinetic changes that were specific to GluN1 or GluN2 locations. This may be a first indication that the sequence of discernible kinetic transitions during NMDA receptor activation may reflect subunit-dependent movements of M3 helices. Testing this hypothesis may afford insight into the activation mechanism of NMDA receptors.


Asunto(s)
Activación del Canal Iónico/genética , Receptores de N-Metil-D-Aspartato/química , Alanina/genética , Animales , Sitios de Unión , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Mutación Missense , Conformación Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ratas , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología
11.
Nat Commun ; 2: 498, 2011 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-21988914

RESUMEN

Two classes of glutamate-activated channels mediate excitation at central synapses: N-methyl-D-aspartic acid (NMDA) receptors and non-NMDA receptors. Despite substantial structural homology, each class generates signals with characteristic kinetics and mediates distinct synaptic functions. In non-NMDA receptors, the strength of intersubunit contacts within ligand-binding domains is inversely correlated with functional desensitization. Here we test how the strength of these contacts affects NMDA receptor activation by combining mutagenesis and single-channel current analyses. We show that receptors with covalently linked dimers had significantly lower activity due to high barriers to opening and unstable open states but had intact desensitization. On the basis of these observations, we suggest that in NMDA receptors rearrangements at the heterodimer interface represent an early and integral step of the opening sequence but are not required for desensitization. These results demonstrate distinct functional roles in the activation of NMDA and non-NMDA glutamate-gated channels for largely conserved intersubunit contacts.


Asunto(s)
Receptores de N-Metil-D-Aspartato/agonistas , Dimerización , Ligandos , Técnicas de Placa-Clamp , Unión Proteica , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo
12.
Genomics ; 90(2): 236-48, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17524610

RESUMEN

Rhodopsin kinase (RK) is a conserved component of the light adaptation and recovery pathways shared among rod and cone photoreceptors of a variety of species. To gain insight into transcriptional mechanisms driving RK and potentially other genes of similar spatial profile, the components and the interactions of the highly compact enhancer/promoter region (E/P) upstream of the human RK gene were examined. Cross-species comparison outlined an active 49-bp widely shared E/P core as the major site of conservation in the entire 5' flanking sequence. The area consisted of a bicoid-type homeodomain recognition cassette and a unique T-rich module interacting with TATA-binding proteins. Homeodomain interactions involved primarily Crx and secondarily Otx2. Both strongly stimulated the E/P. In the absence of Crx, persistent E/P activity shifted from the outer retina to the inner to follow the Otx2 pattern. The spatial patterns were largely unaffected by the absence of rod transcription factors, Nrl and Nr2e3, and the RK transcriptional activity preceded the surge in rod-specific transcription. Conserved bicoid homeodomain factors thus appear to be the key factors governing localization of RK E/P activity in retina and photoreceptors.


Asunto(s)
Elementos de Facilitación Genéticos , Quinasa 1 del Receptor Acoplado a Proteína-G/genética , Regiones Promotoras Genéticas , Animales , Secuencia de Bases , Bovinos , Células Cultivadas , Secuencia Conservada , Quinasa 1 del Receptor Acoplado a Proteína-G/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Retina/metabolismo , Proteína de Unión a TATA-Box/genética , Proteína de Unión a TATA-Box/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Transcripción Genética , Células Tumorales Cultivadas , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA