Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plants (Basel) ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732401

RESUMEN

Breeding for low-hydrogen-cyanide (HCN) varieties is a major objective of programs targeting boiled cassava food products. To enhance the breeding of low-HCN varieties, knowledge of genetic variation and trait heritability is essential. In this study, 64 cassava clones were established across four locations and evaluated for HCN using three HCN assessment methods: one with a 1 to 9 scale, on with a 0 ppm to 800 ppm scale, and a quantitative assay based on spectrophotometer readings (HCN_Spec). Data were also collected on the weather variables precipitation, relative humidity, and temperature. Highly significant differences were observed among clones (p < 0.001) and locations (p < 0.001). There was also significant clone-environment interactions, varying from p < 0.05 to p < 0.001. Locations Arua and Serere showed higher HCN scores among clones and were associated with significantly higher (p < 0.001) mean daily temperatures (K) and lower relative humidity values (%) across 12 h and 18 h intervals. Within locations, HCN broad sense heritability estimates ranged from 0.22 to 0.64, while combined location heritability estimates ranged from 0.14 to 0.32. Relationships between the methods were positive and strong (r = 0.75-0.92). The 1 to 9 scale is more accurate and more reproducible than either the 0 to 800 ppm scale or spectrophotometric methods. It is expected that the information herein will accelerate efforts towards breeding for low-HCN cassava varieties.

2.
Plant Genome ; : e20403, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938872

RESUMEN

This study focuses on meeting end-users' demand for cassava (Manihot esculenta Crantz) varieties with low cyanogenic potential (hydrogen cyanide potential [HCN]) by using near-infrared spectrometry (NIRS). This technology provides a fast, accurate, and reliable way to determine sample constituents with minimal sample preparation. The study aims to evaluate the effectiveness of machine learning (ML) algorithms such as logistic regression (LR), support vector machine (SVM), and partial least squares discriminant analysis (PLS-DA) in distinguishing between low and high HCN accessions. Low HCN accessions averagely scored 1-5.9, while high HCN accessions scored 6-9 on a 1-9 categorical scale. The researchers used 1164 root samples to test different NIRS prediction models and six spectral pretreatments. The wavelengths 961, 1165, 1403-1505, 1913-1981, and 2491 nm were influential in discrimination of low and high HCN accessions. Using selected wavelengths, LR achieved 100% classification accuracy and PLS-DA achieved 99% classification accuracy. Using the full spectrum, the best model for discriminating low and high HCN accessions was the PLS-DA combined with standard normal variate with second derivative, which produced an accuracy of 99.6%. The SVM and LR had moderate classification accuracies of 75% and 74%, respectively. This study demonstrates that NIRS coupled with ML algorithms can be used to identify low and high HCN accessions, which can help cassava breeding programs to select for low HCN accessions.

3.
Front Plant Sci ; 13: 1016170, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311140

RESUMEN

Provitamin A biofortification and increased dry matter content are important breeding targets in cassava improvement programs worldwide. Biofortified varieties contribute to the alleviation of provitamin A deficiency, a leading cause of preventable blindness common among pre-school children and pregnant women in developing countries particularly Africa. Dry matter content is a major component of dry yield and thus underlies overall variety performance and acceptability by growers, processors, and consumers. Single nucleotide polymorphism (SNP) markers linked to these traits have recently been discovered through several genome-wide association studies but have not been deployed for routine marker-assisted selection (MAS). This is due to the lack of useful information on markers' performances in diverse genetic backgrounds. To overcome this bottleneck, technical and biological validation of the loci associated with increased carotenoid content and dry matter content were carried out using populations independent of the marker discovery population. In the present study, seven previously identified markers for these traits were converted to a robust set of uniplex allele-specific polymerase chain reaction (PCR) assays and validated in two independent pre-breeding and breeding populations. These assays were efficient in discriminating marker genotypic classes and had an average call rate greater than 98%. A high correlation was observed between the predicted and observed carotenoid content as inferred by root yellowness intensity in the breeding (r = 0.92) and pre-breeding (r = 0.95) populations. On the other hand, dry matter content-markers had moderately low predictive accuracy in both populations (r< 0.40) due to the more quantitative nature of the trait. This work confirmed the markers' effectiveness in multiple backgrounds, therefore, further strengthening their value in cassava biofortification to ensure nutritional security as well as dry matter content productivity. Our study provides a framework to guide future marker validation, thus leading to the more routine use of markers in MAS in cassava improvement programs.

4.
Plant Genome ; 10(3)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29293806

RESUMEN

Cassava ( Crantz) is a clonally propagated staple food crop in the tropics. Genomic selection (GS) has been implemented at three breeding institutions in Africa to reduce cycle times. Initial studies provided promising estimates of predictive abilities. Here, we expand on previous analyses by assessing the accuracy of seven prediction models for seven traits in three prediction scenarios: cross-validation within populations, cross-population prediction and cross-generation prediction. We also evaluated the impact of increasing the training population (TP) size by phenotyping progenies selected either at random or with a genetic algorithm. Cross-validation results were mostly consistent across programs, with nonadditive models predicting of 10% better on average. Cross-population accuracy was generally low (mean = 0.18) but prediction of cassava mosaic disease increased up to 57% in one Nigerian population when data from another related population were combined. Accuracy across generations was poorer than within-generation accuracy, as expected, but accuracy for dry matter content and mosaic disease severity should be sufficient for rapid-cycling GS. Selection of a prediction model made some difference across generations, but increasing TP size was more important. With a genetic algorithm, selection of one-third of progeny could achieve an accuracy equivalent to phenotyping all progeny. We are in the early stages of GS for this crop but the results are promising for some traits. General guidelines that are emerging are that TPs need to continue to grow but phenotyping can be done on a cleverly selected subset of individuals, reducing the overall phenotyping burden.


Asunto(s)
Genoma de Planta , Manihot/genética , Manihot/fisiología , Fitomejoramiento , Selección Genética , África , Algoritmos , Productos Agrícolas/genética , Productos Agrícolas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA