Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biochem Biophys Res Commun ; 703: 149575, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38382357

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, with a median survival of less than 12 months and a 5-year survival of less than 10 %. Here, we have established an image-based screening pipeline for quantifying single PDAC spheroid dynamics in genetically and phenotypically diverse PDAC cell models. Wild-type KRas PDAC cells formed tight/compact spheroids - compaction of these structures was completely blocked by cytoplasmic dynein and focal adhesion kinase (FAK) inhibitors. In contrast, PDAC cells containing mutant KRas formed loosely aggregated spheroids that grew significantly slower following inhibition of polo-like kinase 1 (PLK1) or focal adhesion kinase (FAK). Independent of genetic background, multicellular PDAC-mesenchymal stromal cell (MSC) spheroids self-organized into structures with an MSC-dominant core. The inclusion of MSCs into wild-type KRas PDAC spheroids modestly affected their compaction; however, MSCs significantly increased the compaction and growth of mutant KRas PDAC spheroids. Notably, exogenous collagen 1 potentiated PANC1 spheroid compaction while ITGA1 knockdown in PANC1 cells blocked MSC-induced PANC1 spheroid compaction. In agreement with a role for collagen-based integrin adhesion complexes in stromal cell-induced PDAC phenotypes, we also discovered that MSC-induced PANC1 spheroid growth was completely blocked by the ITGB1 immunoneutralizing antibody mAb13. Finally, multiplexed single-cell immunohistochemical analysis of a 25 patient PDAC tissue microarray revealed a relationship between decreased variance in Spearman r correlation for ITGA1 and PLK1 expression within the tumor cell compartment of PDAC in patients with advanced disease stage, and elevated expression of both ITGA1 and PLK1 in PDAC was found to be associated with decreased patient survival. Taken together, this work uncovers new therapeutic vulnerabilities in PDAC that are relevant to the progression of this stromal cell-rich malignancy and which may reveal strategies for improving patient outcomes.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Detección Precoz del Cáncer , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Colágeno/metabolismo , Uniones Célula-Matriz/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Línea Celular Tumoral
2.
Biochem Biophys Res Commun ; 509(1): 69-75, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30579599

RESUMEN

Cripto regulates stem cell function in normal and disease contexts via TGFbeta/activin/nodal, PI3K/Akt, MAPK and Wnt signaling. Still, the molecular mechanisms that govern these pleiotropic functions of Cripto remain poorly understood. We performed an unbiased screen for novel Cripto binding proteins using proteomics-based methods, and identified novel proteins including members of myosin II complexes, the actin cytoskeleton, the cellular stress response, and extracellular exosomes. We report that myosin II, and upstream ROCK1/2 activities are required for localization of Cripto to cytoplasm/membrane domains and its subsequent release into the conditioned media fraction of cultured cells. Functionally, we demonstrate that soluble Cripto (one-eyed pinhead in zebrafish) promotes proliferation in mesenchymal stem cells (MSCs) and stem cell-mediated wound healing in the zebrafish caudal fin model of regeneration. Notably, we demonstrate that both Cripto and myosin II inhibitors attenuated regeneration to a similar degree and in a non-additive manner. Taken together, our data present a novel role for myosin II function in regulating subcellular Cripto localization and function in stem cells and an important regulatory mechanism of tissue regeneration. Importantly, these insights may further the development of context-dependent Cripto agonists and antagonists for therapeutic benefit.


Asunto(s)
Aletas de Animales/fisiología , Proteínas de Homeodominio/metabolismo , Miosina Tipo II/metabolismo , Mapas de Interacción de Proteínas , Regeneración , Células Madre/citología , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Línea Celular , Proliferación Celular , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre/metabolismo , Cicatrización de Heridas
3.
J Cell Sci ; 126(Pt 4): 904-13, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23321642

RESUMEN

Breast cancer and melanoma cells commonly metastasize to the brain using homing mechanisms that are poorly understood. Cancer patients with brain metastases display poor prognosis and survival due to the lack of effective therapeutics and treatment strategies. Recent work using intravital microscopy and preclinical animal models indicates that metastatic cells colonize the brain, specifically in close contact with the existing brain vasculature. However, it is not known how contact with the vascular niche promotes microtumor formation. Here, we investigate the role of connexins in mediating early events in brain colonization using transparent zebrafish and chicken embryo models of brain metastasis. We provide evidence that breast cancer and melanoma cells utilize connexin gap junction proteins (Cx43, Cx26) to initiate brain metastatic lesion formation in association with the vasculature. RNAi depletion of connexins or pharmacological blocking of connexin-mediated cell-cell communication with carbenoxolone inhibited brain colonization by blocking tumor cell extravasation and blood vessel co-option. Activation of the metastatic gene twist in breast cancer cells increased Cx43 protein expression and gap junction communication, leading to increased extravasation, blood vessel co-option and brain colonization. Conversely, inhibiting twist activity reduced Cx43-mediated gap junction coupling and brain colonization. Database analyses of patient histories revealed increased expression of Cx26 and Cx43 in primary melanoma and breast cancer tumors, respectively, which correlated with increased cancer recurrence and metastasis. Together, our data indicate that Cx43 and Cx26 mediate cancer cell metastasis to the brain and suggest that connexins might be exploited therapeutically to benefit cancer patients with metastatic disease.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/metabolismo , Conexinas/metabolismo , Melanoma/complicaciones , Melanoma/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias de la Mama/genética , Embrión de Pollo , Conexina 26 , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Femenino , Humanos , Melanoma/genética , Ratones , Ratones Desnudos , Metástasis de la Neoplasia/genética , Interferencia de ARN
4.
Biochem Biophys Res Commun ; 465(3): 606-12, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26297948

RESUMEN

Transforming Growth Factor beta (TGFß) is the archetypal member of the TGFß superfamily of ligands and has pleiotropic functions during normal development, adult tissue homeostasis and pathophysiological processes such as cancer. In epithelial cancers TGFß signaling can either suppress tumor growth or promote metastasis via the induction of a well-characterized epithelial-mesenchymal transition (EMT) program. We recently reported that PEAK1 kinase mediates signaling cross talk between TGFß receptors and integrin/Src/MAPK pathways and functions as a critical molecular regulator of TGFß-induced breast cancer cell proliferation, migration, EMT and metastasis. Here, we examined the breast cancer cell contexts in which TGFß induces both EMT and PEAK1, and discovered this event to be unique to oncogene-transformed mammary epithelial cells and triple-negative breast cancer cells. Using the Cancer BioPortal database, we identified PEAK1 co-expressors across multiple malignancies that are also common to the TGFß response gene signature (TBRS). We then used the ScanSite database to identify predicted protein-protein binding partners of PEAK1 and the PEAK1-TBRS co-expressors. Analysis of the Cytoscape interactome and Babelomics-derived gene ontologies for a novel gene set including PEAK1, CRK, ZEB1, IL11 and COL4A1 enabled us to hypothesize that PEAK1 may be regulating TGFß-induced EMT via its interaction with or regulation of these other genes. In this regard, we have demonstrated that PEAK1 is necessary for TGFß to induce ZEB1-mediated EMT in the context of fibronectin/ITGB3 activation. These studies and future mechanistic studies will pave the way toward identifying the context in which TGFß blockade may significantly improve breast cancer patient outcomes.


Asunto(s)
Neoplasias de la Mama/metabolismo , Transición Epitelial-Mesenquimal , Fibronectinas/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Transducción de Señal , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
5.
Anal Biochem ; 446: 102-7, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24161902

RESUMEN

The cell cytoskeleton is composed of microtubules, intermediate filaments, and actin that provide a rigid support structure important for cell shape. However, it is also a dynamic signaling scaffold that receives and transmits complex mechanosensing stimuli that regulate normal physiological and aberrant pathophysiological processes. Studying cytoskeletal functions in the cytoskeleton's native state is inherently difficult due to its rigid and insoluble nature. This has severely limited detailed proteomic analyses of the complex protein networks that regulate the cytoskeleton. Here, we describe a purification method that enriches for the cytoskeleton and its associated proteins in their native state that is also compatible with current mass spectrometry-based protein detection methods. This method can be used for biochemical, fluorescence, and large-scale proteomic analyses of numerous cell types. Using this approach, 2346 proteins were identified in the cytoskeletal fraction of purified mouse embryonic fibroblasts, of which 635 proteins were either known cytoskeleton proteins or cytoskeleton-interacting proteins. Functional annotation and network analyses using the Ingenuity Knowledge Database of the cytoskeletome revealed important nodes of interconnectivity surrounding well-established regulators of the actin cytoskeleton and focal adhesion complexes. This improved cytoskeleton purification method will aid our understanding of how the cytoskeleton controls normal and diseased cell functions.


Asunto(s)
Citoesqueleto/metabolismo , Proteómica/métodos , Animales , Línea Celular , Fibroblastos/citología , Espectrometría de Masas , Ratones
6.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38543112

RESUMEN

SMADs are the canonical intracellular effector proteins of the TGF-ß (transforming growth factor-ß). SMADs translocate from plasma membrane receptors to the nucleus regulated by many SMAD-interacting proteins through phosphorylation and other post-translational modifications that govern their nucleocytoplasmic shuttling and subsequent transcriptional activity. The signaling pathway of TGF-ß/SMAD exhibits both tumor-suppressing and tumor-promoting phenotypes in epithelial-derived solid tumors. Collectively, the pleiotropic nature of TGF-ß/SMAD signaling presents significant challenges for the development of effective cancer therapies. Here, we review preclinical studies that evaluate the efficacy of inhibitors targeting major SMAD-regulating and/or -interacting proteins, particularly enzymes that may play important roles in epithelial or mesenchymal compartments within solid tumors.

7.
Sci Rep ; 14(1): 3517, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347040

RESUMEN

Aqueous humor (AH) and blood levels of transforming growth factor ß (TGFß) are elevated in idiopathic primary open angle glaucoma (POAG) representing a disease biomarker of unclear status and function. Tsk mice display a POAG phenotype and harbor a mutation of fibrillin-1, an important regulator of TGFß bioavailability. AH TGFß2 was higher in Tsk than wild-type (WT) mice (by 34%; p = 0.002; ELISA); similarly, AH TGFß2 was higher in human POAG than controls (2.7-fold; p = 0.00005). As in POAG, TGFß1 was elevated in Tsk serum (p = 0.01). Fibrillin-1 was detected in AH from POAG subjects and Tsk mice where both had similar levels relative to controls (p = 0.45). 350 kDa immunoblot bands representing WT full-length fibrillin-1 were present in human and mouse AH. A 418 kDa band representing mutant full-length fibrillin-1 was present only in Tsk mice. Lower molecular weight fibrillin-1 antibody-reactive bands were present in similar patterns in humans and mice. Certain bands (130 and 32 kDa) were elevated only in human POAG and Tsk mice (p ≤ 0.04 relative to controls) indicating discrete isoforms relevant to disease. In addition to sharing a phenotype, Tsk mice and human POAG subjects had common TGFß and fibrillin-1 features in AH and also blood that are pertinent to understanding glaucoma pathogenesis.


Asunto(s)
Humor Acuoso , Glaucoma de Ángulo Abierto , Animales , Humanos , Ratones , Humor Acuoso/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Fenotipo , Factor de Crecimiento Transformador beta/metabolismo
8.
Adv Healthc Mater ; 13(21): e2302331, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38359321

RESUMEN

Patient-derived organoids (PDOs) developed ex vivo and in vitro are increasingly used for therapeutic screening. They provide a more physiologically relevant model for drug discovery and development compared to traditional cell lines. However, several challenges remain to be addressed to fully realize the potential of PDOs in therapeutic screening. This paper summarizes recent advancements in PDO development and the enhancement of PDO culture models. This is achieved by leveraging materials engineering and microfabrication technologies, including organs-on-a-chip and droplet microfluidics. Additionally, this work discusses the application of PDOs in therapy screening to meet diverse requirements and overcome bottlenecks in cancer treatment. Furthermore, this work introduces tools for data processing and analysis of organoids, along with their microenvironment. These tools aim to achieve enhanced readouts. Finally, this work explores the challenges and future perspectives of using PDOs in drug development and personalized screening for cancer patients.


Asunto(s)
Neoplasias , Organoides , Humanos , Organoides/efectos de los fármacos , Organoides/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Medicina de Precisión/métodos , Dispositivos Laboratorio en un Chip , Ensayos de Selección de Medicamentos Antitumorales/métodos
9.
Hum Cell ; 37(5): 1593-1601, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103560

RESUMEN

Neuroendocrine tumors (NETs) of the pancreas are rare neoplasms that present complex challenges to diagnosis and treatment due to their indolent course. The incidence of pancreatic neuroendocrine tumors has increased significantly over the past two decades. A limited number of pancreatic neuroendocrine cell lines are currently available for the research. Here, we present 3D-iNET ORION, a novel 3-dimensional (spheroid) cell line, isolated from human pancreatic neuroendocrine tumor liver metastasis. Three-dimensionally grown (3D) cancer cell lines have gained interest over the past years as 3D cancer cell lines better recapitulate the in vivo structure of tumors, and are more suitable for in vitro and in vivo experiments. 3D-iNET ORION cancer cell line showed high potential to form tumorspheres when embedded in Matrigel matrix and expresses synaptophysin and EpCAM. Electron microscopy analysis of cancer cell line proved the presence of dense neurosecretory granules. When xenografted into athymic mice, 3D-iNET ORION cells produce slow-growing tumors, positive for chromogranin and synaptophysin. Human Core Exome Panel Analysis has shown that 3DiNET ORION cell line retains the genetic aberration profile detected in the original tumor. In conclusion, our newly developed neuroendocrine cancer cell line can be considered as a new research tool for in vitro and in vivo experiments.


Asunto(s)
Ratones Desnudos , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Tumores Neuroendocrinos/patología , Animales , Línea Celular Tumoral , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Esferoides Celulares/patología , Técnicas de Cultivo Tridimensional de Células/métodos , Modelos Biológicos , Ratones , Técnicas de Cultivo de Célula/métodos
10.
Proc Natl Acad Sci U S A ; 107(24): 10920-5, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20534451

RESUMEN

Regulation of the actin-myosin cytoskeleton plays a central role in cell migration and cancer progression. Here, we report the discovery of a cytoskeleton-associated kinase, pseudopodium-enriched atypical kinase 1 (PEAK1). PEAK1 is a 190-kDa nonreceptor tyrosine kinase that localizes to actin filaments and focal adhesions. PEAK1 undergoes Src-induced tyrosine phosphorylation, regulates the p130Cas-Crk-paxillin and Erk signaling pathways, and operates downstream of integrin and epidermal growth factor receptors (EGFR) to control cell spreading, migration, and proliferation. Perturbation of PEAK1 levels in cancer cells alters anchorage-independent growth and tumor progression in mice. Notably, primary and metastatic samples from colon cancer patients display amplified PEAK1 levels in 81% of the cases. Our findings indicate that PEAK1 is an important cytoskeletal regulatory kinase and possible target for anticancer therapy.


Asunto(s)
Citoesqueleto/metabolismo , Neoplasias/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Seudópodos/metabolismo , Actinas/metabolismo , Animales , Secuencia de Bases , Línea Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias del Colon/metabolismo , Biología Computacional , Cartilla de ADN/genética , Femenino , Adhesiones Focales/metabolismo , Humanos , Técnicas In Vitro , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Ratones , Ratones Desnudos , Neoplasias/etiología , Neoplasias Pancreáticas/metabolismo , Fosfotirosina/metabolismo , Proteínas Tirosina Quinasas/genética , Proteómica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Familia-src Quinasas/metabolismo
11.
bioRxiv ; 2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37090582

RESUMEN

Extracellular matrix (ECM) protein expression/deposition within and stiffening of the breast cancer microenvironment facilitates disease progression and correlates with poor patient survival. However, the mechanisms by which ECM components control tumorigenic behaviors and responses to therapeutic intervention remain poorly understood. Fibronectin (FN) is a major ECM protein controlling multiple processes. In this regard, we previously reported that DHPS-dependent hypusination of eIF5A1/2 is necessary for fibronectin-mediated breast cancer metastasis and epithelial to mesenchymal transition (EMT). Here, we explored the clinical significance of an interactome generated using hypusination pathway components and markers of intratumoral heterogeneity. Solute carrier 3A2 (SLC3A2 or CD98hc) stood out as an indicator of poor overall survival among patients with basal-like breast cancers that express elevated levels of DHPS. We subsequently discovered that blockade of DHPS or SLC3A2 reduced triple negative breast cancer (TNBC) spheroid growth. Interestingly, spheroids stimulated with exogenous fibronectin were less sensitive to inhibition of either DHPS or SLC3A2 - an effect that could be abrogated by dual DHPS/SLC3A2 blockade. We further discovered that a subset of TNBC cells responded to fibronectin by increasing cytoplasmic localization of eIF5A1/2. Notably, these fibronectin-induced subcellular localization phenotypes correlated with a G0/G1 cell cycle arrest. Fibronectin-treated TNBC cells responded to dual DHPS/SLC3A2 blockade by shifting eIF5A1/2 localization back to a nucleus-dominant state, suppressing proliferation and further arresting cells in the G2/M phase of the cell cycle. Finally, we observed that dual DHPS/SLC3A2 inhibition increased the sensitivity of both Rb-negative and -positive TNBC cells to the CDK4/6 inhibitor palbociclib. Taken together, these data identify a previously unrecognized mechanism through which extracellular fibronectin controls cancer cell tumorigenicity by modulating subcellular eIF5A1/2 localization and provides prognostic/therapeutic utility for targeting the cooperative DHPS/SLC3A2 signaling axis to improve breast cancer treatment responses.

12.
Biofabrication ; 15(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37348491

RESUMEN

Three-dimensional (3D)in vitrotumor models that can capture the pathophysiology of human tumors are essential for cancer biology and drug development. However, simulating the tumor microenvironment is still challenging because it consists of a heterogeneous mixture of various cellular components and biological factors. In this regard, current extracellular matrix (ECM)-mimicking hydrogels used in tumor tissue engineering lack physical interactions that can keep biological factors released by encapsulated cells within the hydrogel and improve paracrine interactions. Here, we developed a nanoengineered ion-covalent cross-linkable bioink to construct 3D bioprinted organotypic tumor models. The bioink was designed to implement the tumor ECM by creating an interpenetrating network composed of gelatin methacryloyl (GelMA), a light cross-linkable polymer, and synthetic nanosilicate (Laponite) that exhibits a unique ionic charge to improve retention of biological factors released by the encapsulated cells and assist in paracrine signals. The physical properties related to printability were evaluated to analyze the effect of Laponite hydrogel on bioink. Low GelMA (5%) with high Laponite (2.5%-3.5%) composite hydrogels and high GelMA (10%) with low Laponite (1.0%-2.0%) composite hydrogels showed acceptable mechanical properties for 3D printing. However, a low GelMA composite hydrogel with a high Laponite content could not provide acceptable cell viability. Fluorescent cell labeling studies showed that as the proportion of Laponite increased, the cells became more aggregated to form larger 3D tumor structures. Reverse transcription-polymerase chain reaction (RT-qPCR) and western blot experiments showed that an increase in the Laponite ratio induces upregulation of growth factor and tissue remodeling-related genes and proteins in tumor cells. In contrast, cell cycle and proliferation-related genes were downregulated. On the other hand, concerning fibroblasts, the increase in the Laponite ratio indicated an overall upregulation of the mesenchymal phenotype-related genes and proteins. Our study may provide a rationale for using Laponite-based hydrogels in 3D cancer modeling.


Asunto(s)
Bioimpresión , Neoplasias , Humanos , Andamios del Tejido/química , Bioimpresión/métodos , Ingeniería de Tejidos/métodos , Gelatina/química , Impresión Tridimensional , Hidrogeles/farmacología , Hidrogeles/química , Factores Biológicos , Microambiente Tumoral
13.
J Cell Sci ; 123(Pt 13): 2332-41, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20530574

RESUMEN

Little is known about how metastatic cancer cells arrest in small capillaries and traverse the vascular wall during extravasation in vivo. Using real-time intravital imaging of human tumor cells transplanted into transparent zebrafish, we show here that extravasation of cancer cells is a highly dynamic process that involves the modulation of tumor cell adhesion to the endothelium and intravascular cell migration along the luminal surface of the vascular wall. Tumor cells do not damage or induce vascular leak at the site of extravasation, but rather induce local vessel remodeling characterized by clustering of endothelial cells and cell-cell junctions. Intravascular locomotion of tumor cells is independent of the direction of blood flow and requires beta1-integrin-mediated adhesion to the blood-vessel wall. Interestingly, the expression of the pro-metastatic gene Twist in tumor cells increases their intravascular migration and extravasation through the vessel wall. However, in this case, Twist expression causes the tumor cells to switch to a beta1-integrin-independent mode of extravasation that is associated with the formation of large dynamic rounded membrane protrusions. Our results demonstrate that extravasation of tumor cells is a highly dynamic process influenced by metastatic genes that target adhesion and intravascular migration of tumor cells, and induce endothelial remodeling.


Asunto(s)
Línea Celular Tumoral/patología , Movimiento Celular , Endotelio , Neoplasias/patología , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral/metabolismo , Extensiones de la Superficie Celular/metabolismo , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/fisiología , Endotelio/citología , Endotelio/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/genética , Neoplasias/metabolismo , Proteína 1 Relacionada con Twist/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
14.
Sci Rep ; 12(1): 10623, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739142

RESUMEN

Primary open angle glaucoma (POAG) features an optic neuropathy, elevated aqueous humor (AH) TGFß2, and major risk factors of central corneal thickness (CCT), increasing age and intraocular pressure (IOP). We examined Tight skin (Tsk) mice to see if mutation of fibrillin-1, a repository for latent TGFß, is associated with characteristics of human POAG. We measured: CCT by ocular coherence tomography (OCT); IOP; retinal ganglion cell (RGC) and optic nerve axon counts by microscopic techniques; visual electrophysiologic scotopic threshold responses (STR) and pattern electroretinogram (PERG); and AH TGFß2 levels and activity by ELISA and MINK epithelial cell-based assays respectively. Tsk mice had open anterior chamber angles and compared with age-matched wild type (WT) mice: 23% thinner CCT (p < 0.003); IOP that was higher (p < 0.0001), more asymmetric (p = 0.047), rose with age (p = 0.04) and had a POAG-like frequency distribution. Tsk mice also had RGCs that were fewer (p < 0.04), declined with age (p = 0.0003) and showed increased apoptosis and glial activity; fewer optic nerve axons (p = 0.02); abnormal axons and glia; reduced STR (p < 0.002) and PERG (p < 0.007) visual responses; and higher AH TGFß2 levels (p = 0.0002) and activity (p = 1E-11) especially with age. Tsk mice showed defining features of POAG, implicating aberrant fibrillin-1 homeostasis as a pathogenic contributor to emergence of a POAG phenotype.


Asunto(s)
Humor Acuoso , Fibrilina-1 , Glaucoma de Ángulo Abierto , Animales , Humor Acuoso/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Glaucoma de Ángulo Abierto/patología , Humanos , Presión Intraocular , Ratones , Células Ganglionares de la Retina/patología , Tonometría Ocular , Factor de Crecimiento Transformador beta2
15.
Oncogene ; 40(33): 5224-5235, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34239043

RESUMEN

Intercellular mechanisms by which the stromal microenvironment contributes to solid tumor progression and targeted therapy resistance remain poorly understood, presenting significant clinical hurdles. PEAK1 (Pseudopodium-Enriched Atypical Kinase One) is an actin cytoskeleton- and focal adhesion-associated pseudokinase that promotes cell state plasticity and cancer metastasis by mediating growth factor-integrin signaling crosstalk. Here, we determined that stromal PEAK1 expression predicts poor outcomes in HER2-positive breast cancers high in SNAI2 expression and enriched for MSC content. Specifically, we identified that the fibroblastic stroma in HER2-positive breast cancer patient tissue stains positive for both nuclear SNAI2 and cytoplasmic PEAK1. Furthermore, mesenchymal stem cells (MSCs) and cancer-associated fibroblasts (CAFs) express high PEAK1 protein levels and potentiate tumorigenesis, lapatinib resistance and metastasis of HER2-positive breast cancer cells in a PEAK1-dependent manner. Analysis of PEAK1-dependent secreted factors from MSCs revealed INHBA/activin-A as a necessary factor in the conditioned media of PEAK1-expressing MSCs that promotes lapatinib resistance. Single-cell CycIF analysis of MSC-breast cancer cell co-cultures identified enrichment of p-Akthigh/p-gH2AXlow, MCL1high/p-gH2AXlow and GRP78high/VIMhigh breast cancer cell subpopulations by the presence of PEAK1-expressing MSCs and lapatinib treatment. Bioinformatic analyses on a PEAK1-centric stroma-tumor cell gene set and follow-up immunostaining of co-cultures predict targeting antiapoptotic and stress pathways as a means to improve targeted therapy responses and patient outcomes in HER2-positive breast cancer and other stroma-rich malignancies. These data provide the first evidence that PEAK1 promotes tumorigenic phenotypes through a previously unrecognized SNAI2-PEAK1-INHBA stromal cell axis.


Asunto(s)
Neoplasias de la Mama , Lapatinib , Apoptosis , Recuento de Células , Chaperón BiP del Retículo Endoplásmico , Humanos , Transducción de Señal
16.
Sci Rep ; 10(1): 3474, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32103065

RESUMEN

Reliable approaches to identify stem cell mechanisms that mediate aggressive cancer could have great therapeutic value, based on the growing evidence of embryonic signatures in metastatic cancers. However, how to best identify and target stem-like mechanisms aberrantly acquired by cancer cells has been challenging. We harnessed the power of reprogramming to examine GRP78, a chaperone protein generally restricted to the endoplasmic reticulum in normal tissues, but which is expressed on the cell surface of human embryonic stem cells and many cancer types. We have discovered that (1) cell surface GRP78 (sGRP78) is expressed on iPSCs and is important in reprogramming, (2) sGRP78 promotes cellular functions in both pluripotent and breast cancer cells (3) overexpression of GRP78 in breast cancer cells leads to an induction of a CD24-/CD44+ tumor initiating cell (TIC) population (4) sGRP78+ breast cancer cells are enriched for stemness genes and appear to be a subset of TICs (5) sGRP78+ breast cancer cells show an enhanced ability to seed metastatic organ sites in vivo. These collective findings show that GRP78 has important functions in regulating both pluripotency and oncogenesis, and suggest that sGRP78 marks a stem-like population in breast cancer cells that has increased metastatic potential in vivo.


Asunto(s)
Diferenciación Celular , Autorrenovación de las Células , Proteínas de Choque Térmico/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Transformación Celular Neoplásica , Reprogramación Celular , Chaperón BiP del Retículo Endoplásmico , Femenino , Células HEK293 , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Ratones , Ratones Noqueados , Células Madre Neoplásicas/citología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Trasplante Heterólogo
17.
Mol Cell Biol ; 26(24): 9268-78, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17030617

RESUMEN

Cripto is a developmental oncoprotein and a member of the epidermal growth factor-Cripto, FRL-1, Cryptic family of extracellular signaling molecules. In addition to having essential functions during embryogenesis, Cripto is highly expressed in tumors and promotes tumorigenesis. During development, Cripto acts as an obligate coreceptor for transforming growth factor beta (TGF-beta) ligands, including nodals, growth and differentiation factor 1 (GDF1), and GDF3. As an oncogene, Cripto is thought to promote tumor growth via mechanisms including activation of mitogenic signaling pathways and antagonism of activin signaling. Here, we provide evidence supporting a novel mechanism in which Cripto inhibits the tumor suppressor function of TGF-beta. Cripto bound TGF-beta and reduced the association of TGF-beta with its type I receptor, TbetaRI. Consistent with its ability to block receptor assembly, Cripto suppressed TGF-beta signaling in multiple cell types and diminished the cytostatic effects of TGF-beta in mammary epithelial cells. Furthermore, targeted disruption of Cripto expression by use of small inhibitory RNA enhanced TGF-beta signaling, indicating that endogenous Cripto plays a role in restraining TGF-beta responses.


Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Proteínas Ligadas a GPI , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular , Ratones , Unión Proteica/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta , Factor de Crecimiento Transformador beta/fisiología
19.
Oncotarget ; 10(32): 3027-3039, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31105883

RESUMEN

Cancer metastasis is responsible for the clear majority of cancer-related deaths. Survival and expansion of cancer cells at secondary sites requires that these premetastatic microenvironments be primed by primary tumor cells and their secreted factors. Efforts to date have been limited by immune-deficient in vivo models and/or the need for finely-tuned analysis time points that reduce contributions from early-disseminating cancer cells. In this regard, we developed a tumor cell-free syngeneic breast cancer model for characterizing tumor cell secretome-mediated reprogramming of premetastatic tissues. We demonstrate that secretomes from metastatic breast cancer cells differentially regulate the lung and brain, promoting a tumor-supportive lung microenvironment with both elevated CD73 expression and decreased TNFα expression. Using in vitro models of CD73-positive mesenchymal stem cells (MSCs) and macrophages/monocytes, we tested whether MSCs can mediate anti-inflammatory effects of metastatic breast cancer cells. Notably, conditioned media from metastatic Py230 cells reprogrammed the secretomes of MSCs toward an anti-inflammatory state. Mining transcriptome data from Py8119 and Py230 cells revealed a lipocalin 2 (LCN2) axis that is selectively expressed in the metastatic Py230 cells, predicts poor breast cancer patient survival and is elevated in circulating serum of mice chronically treated with conditioned media from Py230 cells. Taken together, these results establish the utility of an immune-competent tumor cell-free model for characterizing the mechanisms of breast cancer cell priming of the premetastatic niche, demonstrate that MSCs can mediate the anti-inflammatory effects of metastatic breast cancer cells and substantiate LCN2 as a promising therapeutic target for blocking breast cancer progression.

20.
Sci Rep ; 7(1): 10060, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28855593

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has single-digit 5-year survival rates at <7%. There is a dire need to improve pre-malignant detection methods and identify new therapeutic targets for abrogating PDAC progression. To this end, we mined our previously published pseudopodium-enriched (PDE) protein/phosphoprotein datasets to identify novel PDAC-specific biomarkers and/or therapeutic targets. We discovered that integrin alpha 1 (ITGA1) is frequently upregulated in pancreatic cancers and associated precursor lesions. Expression of ITGA1-specific collagens within the pancreatic cancer microenvironment significantly correlates with indicators of poor patient prognosis, and depleting ITGA1 from PDAC cells revealed that it is required for collagen-induced tumorigenic potential. Notably, collagen/ITGA1 signaling promotes the survival of ALDH1-positive stem-like cells and cooperates with TGFß to drive gemcitabine resistance. Finally, we report that ITGA1 is required for TGFß/collagen-induced EMT and metastasis. Our data suggest that ITGA1 is a new diagnostic biomarker and target that can be leveraged to improve patient outcomes.


Asunto(s)
Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Cadenas alfa de Integrinas/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Familia de Aldehído Deshidrogenasa 1 , Animales , Antimetabolitos Antineoplásicos/farmacología , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Embrión de Pollo , Membrana Corioalantoides/irrigación sanguínea , Membrana Corioalantoides/efectos de los fármacos , Colágeno/genética , Colágeno/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Transición Epitelial-Mesenquimal , Humanos , Cadenas alfa de Integrinas/antagonistas & inhibidores , Cadenas alfa de Integrinas/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Pronóstico , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Transducción de Señal , Análisis de Matrices Tisulares , Factor de Crecimiento Transformador beta/farmacología , Microambiente Tumoral/genética , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA