Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Lipid Res ; 65(7): 100572, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823780

RESUMEN

Contrast-enhanced computed tomography offers a nondestructive approach to studying adipose tissue in 3D. Several contrast-enhancing staining agents (CESAs) have been explored, whereof osmium tetroxide (OsO4) is the most popular nowadays. However, due to the toxicity and volatility of the conventional OsO4, alternative CESAs with similar staining properties were desired. Hf-WD 1:2 POM and Hexabrix have proven effective for structural analysis of adipocytes using contrast-enhanced computed tomography but fail to provide chemical information. This study introduces isotonic Lugol's iodine (IL) as an alternative CESA for adipose tissue analysis, comparing its staining potential with Hf-WD 1:2 POM and Hexabrix in murine caudal vertebrae and bovine muscle tissue strips. Single and sequential staining protocols were compared to assess the maximization of information extraction from each sample. The study investigated interactions, distribution, and reactivity of iodine species towards biomolecules using simplified model systems and assesses the potential of the CESA to provide chemical information. (Bio)chemical analyses on whole tissues revealed that differences in adipocyte gray values post-IL staining were associated with chemical distinctions between bovine muscle tissue and murine caudal vertebrae. More specific, a difference in the degree of unsaturation of fatty acids was identified as a likely contributor, though not the sole determinant of gray value differences. This research sheds light on the potential of IL as a CESA, offering both structural and chemical insights into adipose tissue composition.


Asunto(s)
Tejido Adiposo , Medios de Contraste , Tomografía Computarizada por Rayos X , Animales , Ratones , Medios de Contraste/química , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/metabolismo , Bovinos , Tomografía Computarizada por Rayos X/métodos , Coloración y Etiquetado/métodos , Adipocitos/citología , Adipocitos/metabolismo , Ratones Endogámicos C57BL
2.
J Anat ; 245(5): 725-739, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39213384

RESUMEN

The fascial system has gained recognition for its integral role in connecting skin, superficial and deep fasciae, and underlying muscles. However, consensus on its microstructure depending on its topography remains elusive as well as its implications in clinical practices, such as reconstructive surgery and physiotherapy techniques. This study focuses on the iliotibial tract (ITT) implicated in the iliotibial band syndrome. The goal is to describe microstructural characteristics using classical 2D histology and cryogenic contrast-enhanced microcomputed tomography (cryo-CECT) such as the total thickness, number of layers, layer thickness, fibre orientation and tortuosity, according to the specific topography. The total thickness of the ITT varied across topographic regions, with the superior part being on average thicker but non-significantly different from the other regions. The inferior part showed heterogeneity, with the anterior region (AI) being the thinnest and the posterior one (PI) the thickest. The ITT exhibited 1-3 layers, with no significant differences among regions. Most commonly, it consisted of two layers, except for the antero-superior (AS) and antero-middle (AM) regions, which sometimes had only one layer. The posterior regions frequently had 2 or 3 layers, with the PI region having the highest mean (2.7 layers). The intermediate layer was the thickest one, varying from the AI region (0.368 mm ± 0.114) to the PI region (0.640 mm ± 0.305). The superficial layer showed regional variability, with the AS region being the thinnest. The deep layer appeared thinner than the superficial one. Fibre orientation analysis indicated that the intermediate layer mainly consisted of oblique longitudinal fibres, orientated downward and forward, while the superficial and deep layers had transversal or oblique transversal fibres. Cryo-CECT 3D observations confirmed these findings, revealing distinct orientations for different layers. Fibre tortuosity exhibited differences based on orientation. Transversal fibres (>65°) were significantly less tortuous than longitudinal fibres (<25°) and oblique intermediate fibres (25°-65°), aligning with 3D plot observations. This quantitative study highlights various microstructural characteristics of the ITT, offering insights into its regional variations. The analysis accuracy is increased due to the novel technology of cryo-CECT which emerges as a valuable tool for precise assessment of 3D fibre orientation and tortuosity. These findings contribute to a deeper understanding of the ITT structure, useful in clinical practices, such as reconstructive surgery and physiotherapy, and future research endeavours.


Asunto(s)
Imagenología Tridimensional , Microtomografía por Rayos X , Humanos , Masculino , Imagenología Tridimensional/métodos , Femenino , Anciano , Síndrome de la Banda Iliotibial/diagnóstico por imagen , Persona de Mediana Edad , Fascia/anatomía & histología , Fascia/diagnóstico por imagen , Anciano de 80 o más Años , Cadáver
3.
Stem Cells ; 40(2): 149-164, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35257177

RESUMEN

The mechanisms of obesity and type 2 diabetes (T2D)-associated impaired fracture healing are poorly studied. In a murine model of T2D reflecting both hyperinsulinemia induced by high-fat diet and insulinopenia induced by treatment with streptozotocin, we examined bone healing in a tibia cortical bone defect. A delayed bone healing was observed during hyperinsulinemia as newly formed bone was reduced by -28.4 ± 7.7% and was associated with accumulation of marrow adipocytes at the defect site +124.06 ± 38.71%, and increased density of SCA1+ (+74.99 ± 29.19%) but not Runx2+ osteoprogenitor cells. We also observed increased in reactive oxygen species production (+101.82 ± 33.05%), senescence gene signature (≈106.66 ± 34.03%), and LAMIN B1- senescent cell density (+225.18 ± 43.15%), suggesting accelerated senescence phenotype. During insulinopenia, a more pronounced delayed bone healing was observed with decreased newly formed bone to -34.9 ± 6.2% which was inversely correlated with glucose levels (R2 = 0.48, P < .004) and callus adipose tissue area (R2 = .3711, P < .01). Finally, to investigate the relevance to human physiology, we observed that sera from obese and T2D subjects had disease state-specific inhibitory effects on osteoblast-related gene signatures in human bone marrow stromal cells which resulted in inhibition of osteoblast and enhanced adipocyte differentiation. Our data demonstrate that T2D exerts negative effects on bone healing through inhibition of osteoblast differentiation of skeletal stem cells and induction of accelerated bone senescence and that the hyperglycemia per se and not just insulin levels is detrimental for bone healing.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fracturas Óseas , Hiperinsulinismo , Animales , Callo Óseo , Diabetes Mellitus Tipo 2/complicaciones , Curación de Fractura , Humanos , Ratones , Obesidad/complicaciones , Células Madre
4.
Proc Natl Acad Sci U S A ; 116(28): 13927-13936, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31249139

RESUMEN

Genetic engineering of the mouse genome identified many genes that are essential for embryogenesis. Remarkably, the prevalence of concomitant placental defects in embryonic lethal mutants is highly underestimated and indicates the importance of detailed placental analysis when phenotyping new individual gene knockouts. Here we introduce high-resolution contrast-enhanced microfocus computed tomography (CE-CT) as a nondestructive, high-throughput technique to evaluate the 3D placental morphology. Using a contrast agent, zirconium-substituted Keggin polyoxometalate (Zr-POM), the soft tissue of the placenta (i.e., different layers and cell types and its vasculature) was imaged with a resolution of 3.5 µm voxel size. This approach allowed us to visualize and study early and late stages of placental development. Moreover, CE-CT provides a method to precisely quantify placental parameters (i.e., volumes, volume fraction, ratio of different placental layers, and volumes of specific cell populations) that are crucial for statistical comparison studies. The CE-CT assessment of the 3D morphology of the placentas was validated (i) by comparison with standard histological studies; (ii) by evaluating placentas from 2 different mouse strains, 129S6 and C57BL/6J mice; and (iii) by confirming the placental phenotype of mice lacking phosphoinositol 3-kinase (PI3K)-p110α. Finally, the Zr-POM-based CE-CT allowed for inspection of the vasculature structure in the entire placenta, as well as detecting placental defects in pathologies characterized by embryonic resorption and placental fusion. Taken together, Zr-POM-based CE-CT offers a quantitative 3D methodology to investigate placental development or pathologies.


Asunto(s)
Pérdida del Embrión/diagnóstico por imagen , Imagenología Tridimensional , Placenta/ultraestructura , Microtomografía por Rayos X , Animales , Fosfatidilinositol 3-Quinasa Clase I/genética , Medios de Contraste/química , Pérdida del Embrión/genética , Pérdida del Embrión/fisiopatología , Femenino , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/genética , Placentación/fisiología , Embarazo
5.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806852

RESUMEN

Cardiovascular malformations and diseases are common but complex and often not yet fully understood. To better understand the effects of structural and microstructural changes of the heart and the vasculature on their proper functioning, a detailed characterization of the microstructure is crucial. In vivo imaging approaches are noninvasive and allow visualizing the heart and the vasculature in 3D. However, their spatial image resolution is often too limited for microstructural analyses, and hence, ex vivo imaging is preferred for this purpose. Ex vivo X-ray microfocus computed tomography (microCT) is a rapidly emerging high-resolution 3D structural imaging technique often used for the assessment of calcified tissues. Contrast-enhanced microCT (CE-CT) or phase-contrast microCT (PC-CT) improve this technique by additionally allowing the distinction of different low X-ray-absorbing soft tissues. In this review, we present the strengths of ex vivo microCT, CE-CT and PC-CT for quantitative 3D imaging of the structure and/or microstructure of the heart, the vasculature and their substructures in healthy and diseased state. We also discuss their current limitations, mainly with regard to the contrasting methods and the tissue preparation.


Asunto(s)
Sistema Cardiovascular/diagnóstico por imagen , Microtomografía por Rayos X/métodos , Animales , Biomarcadores , Vasos Sanguíneos/diagnóstico por imagen , Vasos Sanguíneos/metabolismo , Anomalías Cardiovasculares/diagnóstico por imagen , Sistema Cardiovascular/patología , Medios de Contraste , Corazón/anatomía & histología , Corazón/diagnóstico por imagen , Válvulas Cardíacas/diagnóstico por imagen , Válvulas Cardíacas/patología , Humanos , Imagenología Tridimensional/métodos , Miocardio/metabolismo
6.
Calcif Tissue Int ; 107(4): 371-380, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32740692

RESUMEN

Obesity is the main cause of type 2 diabetes mellitus (T2DM). Roux-en-Y gastric bypass (RYGB) surgery is an effective treatment for this obesity-related health problem. However, the adverse effects of T2DM on bone tissue persist or even aggravate after this surgical procedure. As studies on the mandibular condyle bone are scarce, the aim of the present study was to assess its compositional characteristics in T2DM and RYGB conditions. Thirty-two male C57BL/6 mice at 8 weeks of age were randomly assigned to receive either a high-fat or low-fat diet. After 14 weeks of high-fat diet intake, seven obese mice were subjected to RYGB surgery. All animals were euthanized at the age of 30 weeks. Mandibular bones were removed and the trabecular condyle region was assessed using Raman spectroscopy. A decreased mineralization was observed for both T2DM and RYGB condyle bones when compared to controls, with elevated carbonate substitutions for the RYGB group. No compositional differences in crystallinity and presence of advanced glycation end products were found between the groups, with the exception of an increased presence of N-carboxymethyl-lysine in RYGB bone compared to their T2DM counterpart. Site-specific measurements revealed a non-uniform bone composition, with increasing mineralization and carbonate substitutions towards the centre of the mandibular condyle. T2DM and RYGB surgery affect the mandibular condyle bone quality, as investigated at compositional level. Assessment of bone structural properties and remodelling should be carried out to further explore the effects of T2DM and RYGB surgery on this skeleton area.


Asunto(s)
Huesos/patología , Diabetes Mellitus Tipo 2/patología , Derivación Gástrica , Obesidad/patología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria
7.
Am J Physiol Endocrinol Metab ; 316(1): E96-E105, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30457914

RESUMEN

Bone marrow adipose tissue (BMAT) increases after menopause, and increased BMAT is associated with osteoporosis and prevalent vertebral fractures. Peroxisome proliferator-activated receptor-γ (PPARγ) activation promotes adipogenesis and inhibits osteoblastogenesis; therefore, PPARγ is a potential contributor to the postmenopausal increase in BMAT and decrease in bone mass. The aim of this study is to determine if PPARγ inhibition can prevent ovariectomy-induced BMAT increase and bone loss in C3H/HeJ mice. Fourteen-week-old female C3H/HeJ mice ( n = 40) were allocated to four intervention groups: sham surgery (Sham) or ovariectomy (OVX; isoflurane anesthesia) with either vehicle (Veh) or PPARγ antagonist administration (GW9662; 1 mg·kg-1·day-1, daily intraperitoneal injections) for 3 wk. We measured BMAT volume, adipocyte size, adipocyte number. and bone structural parameters in the proximal metaphysis of the tibia using polyoxometalate-based contrast enhanced-nanocomputed topogaphy. Bone turnover was measured in the contralateral tibia using histomorphometry. The effects of surgery and treatment were analyzed by two-way ANOVA. OVX increased the BMAT volume fraction (Sham + Veh: 2.9 ± 2.7% vs. OVX + Veh: 8.1 ± 5.0%: P < 0.001), average adipocyte diameter (Sham + Veh: 19.3 ± 2.6 µm vs. OVX + Veh: 23.1 ± 3.4 µm: P = 0.001), and adipocyte number (Sham + Veh: 584 ± 337cells/µm3 vs. OVX + Veh: 824 ± 113cells/µm3: P = 0.03), while OVX decreased bone volume fraction (Sham + Veh: 15.5 ± 2.8% vs. OVX + Veh: 7.7 ± 1.9%; P < 0.001). GW9662 had no effect on BMAT, bone structural parameters, or bone turnover. In conclusion, ovariectomy increased BMAT and decreased bone volume in C3H/HeJ mice. The PPARγ antagonist GW9662 had no effect on BMAT or bone volume in C3H/HeJ mice, suggesting that BMAT accumulation is regulated independently of PPARγ in C3H/HeJ mice.


Asunto(s)
Adipocitos/efectos de los fármacos , Tejido Adiposo/efectos de los fármacos , Anilidas/farmacología , Médula Ósea/efectos de los fármacos , PPAR gamma/antagonistas & inhibidores , Tibia/efectos de los fármacos , Adipocitos/patología , Tejido Adiposo/patología , Animales , Médula Ósea/patología , Remodelación Ósea/efectos de los fármacos , Recuento de Células , Tamaño de la Célula , Femenino , Humanos , Ratones , Ratones Endogámicos C3H , Tamaño de los Órganos , Osteoporosis Posmenopáusica , Ovariectomía , Tibia/diagnóstico por imagen , Tomografía Computarizada por Rayos X
8.
Am J Physiol Endocrinol Metab ; 317(6): E1050-E1054, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31526291

RESUMEN

Estrogen deficiency induces bone loss by increasing bone resorption, in part through upregulation of receptor activator of nuclear factor-κB ligand (RANKL). RANKL is secreted by osteoblasts and osteocytes, but more recently bone marrow (pre)adipocytes have also been shown to express RANKL. Estrogen deficiency increases bone marrow adipose tissue (BMAT). The aim of this study was to determine the effect of ovariectomy (OVX) on RANKL protein expression by bone marrow adipocytes in C3H/HeJ mice. Fourteen-week-old female C3H/HeJ mice (n = 20) were randomized to sham surgery (Sham) or OVX. After 4 wk animals were euthanized. BMAT volume fraction (BMAT volume/marrow volume) was quantified by polyoxometalate-based contrast-enhanced nano-computed tomography. The percentage of RANKL-positive bone marrow adipocytes (RANKL-positive bone marrow adipocytes/total adipocytes) and the percentage of RANKL-positive osteoblasts covering the bone surface (bone surface covered in RANKL-positive osteoblasts/total bone surface) were quantified in the distal metaphysis of immunohistochemically stained sections of the left femur. The effects of OVX were analyzed by Student's t test or Mann-Whitney U test. RANKL was detected in osteoblasts, osteocytes, and bone marrow adipocytes. OVX significantly increased mean percentage of RANKL-positive bone marrow adipocytes [mean (SD): Sham 42 (18)%; OVX 64 (12)%; P = 0.029] as well as BMAT volume/marrow volume [median (interquartile range): Sham 1.4 (4.9)%; OVX 7.2 (7.3)%; P = 0.008] compared with Sham. We show that OVX increased both the percentage of RANKL-positive bone marrow adipocytes and the total BMAT volume fraction in C3H/HeJ mice. Therefore, RANKL produced by bone marrow adipocytes could be an important contributor to OVX-induced bone loss in C3H/HeJ mice.


Asunto(s)
Adipocitos/metabolismo , Células de la Médula Ósea/metabolismo , Ovariectomía , Ligando RANK/metabolismo , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/patología , Animales , Médula Ósea/diagnóstico por imagen , Médula Ósea/patología , Femenino , Fémur/citología , Fémur/metabolismo , Ratones , Ratones Endogámicos C3H , Tamaño de los Órganos , Osteoblastos/citología , Osteoblastos/metabolismo , Osteocitos/citología , Osteocitos/metabolismo , Microtomografía por Rayos X
9.
Calcif Tissue Int ; 103(2): 189-197, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29383407

RESUMEN

Bone homeostasis is influenced by the bone marrow adipose tissue (BMAT). BMAT distribution varies from one anatomical location in the skeleton to another. We developed an advanced microfocus computed tomography imaging and analysis protocol that allows accurate alignment of both the BMAT distribution and bone micro-architecture as well as calculation of the distance of the BMAT adipocytes from the bone surface. Using this protocol, we detected a different spatial BMAT distribution between the rat tibia and mandible: in the proximal metaphysis of the tibia a large amount of BMAT (~ 20% of the total BMAT) was located close to the bone surface (< 20 µm), whereas in the alveolar ridge ~ 30% of the total BMAT was located between 40 and 60 µm from the bone surface. In the alveolar ridge of rats, the trabecular bone volume was 48.3% higher compared to the proximal metaphysis of the tibia (p < 0.0001) and the percentage of adiposity determined to the relative marrow volume was lower (1.5%) compared to the proximal metaphysis of the tibia (9%, p = 0.0002). Interestingly, in the tibia a negative correlation was found between the percentage of adiposity in the total volume and the trabecular thickness (r =- 0.74, p = 0.037). The present study highlights that in comparison to tibial proximal metaphysis, the mandibular bone exhibits a massive trabecular network and a low BMAT content with almost no contact with the bone surface. These findings are of great interest because of the importance of the fat-bone interaction and its potential relevance to several resorptive bone diseases.


Asunto(s)
Tejido Adiposo/diagnóstico por imagen , Médula Ósea/diagnóstico por imagen , Mandíbula/diagnóstico por imagen , Tibia/diagnóstico por imagen , Microtomografía por Rayos X/métodos , Adipocitos/metabolismo , Adiposidad , Animales , Densidad Ósea , Femenino , Homeostasis , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional , Tetróxido de Osmio/química , Ratas , Ratas Sprague-Dawley
10.
Biotechnol Bioeng ; 111(12): 2560-70, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24902541

RESUMEN

Perfusion bioreactors have shown great promise for tissue engineering applications providing a homogeneous and consistent distribution of nutrients and flow-induced shear stresses throughout tissue-engineered constructs. However, non-uniform fluid-flow profiles found in the perfusion chamber entrance region have been shown to affect tissue-engineered construct quality characteristics during culture. In this study a whole perfusion and construct, three dimensional (3D) computational fluid dynamics approach was used in order to optimize a critical design parameter such as the location of the regular pore scaffolds within the perfusion bioreactor chamber. Computational studies were coupled to bioreactor experiments for a case-study flow rate. Two cases were compared in the first instance seeded scaffolds were positioned immediately after the perfusion chamber inlet while a second group was positioned at the computationally determined optimum distance were a steady state flow profile had been reached. Experimental data showed that scaffold location affected significantly cell content and neo-tissue distribution, as determined and quantified by contrast enhanced nanoCT, within the constructs both at 14 and 21 days of culture. However, gene expression level of osteopontin and osteocalcin was not affected by the scaffold location. This study demonstrates that the bioreactor chamber environment, incorporating a scaffold and its location within it, affects the flow patterns within the pores throughout the scaffold requiring therefore dedicated optimization that can lead to bone tissue engineered constructs with improved quality attributes.


Asunto(s)
Reactores Biológicos , Periostio/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido , Células Cultivadas , ADN/análisis , Humanos , Perfusión , Células Madre/citología , Tomografía Computarizada por Rayos X
11.
J Mech Behav Biomed Mater ; 152: 106414, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38277908

RESUMEN

OBJECTIVE: The pathogenesis of osteoarthritis (OA) is associated with subchondral bone changes, which is linked to abnormal strain distribution in the overlying articular cartilage. This highlights the importance of understanding mechanical interaction at the cartilage-bone interface. The aim of this study is to compare solutions of two contrast-enhancing staining agents (CESA) for combining high-resolution Contrast-Enhanced X-ray microfocus Computed Tomography (CECT) with Digital Volume Correlation (DVC) for full-field strain measurements at the cartilage-bone interface. DESIGN: Bovine osteochondral plugs were stained with phosphotungstic acid (PTA) in 70% ethanol or 1:2 hafnium-substituted Wells-Dawson polyoxometalate (Hf-WD POM) in PBS. Mechanical properties were assessed using micromechanical probing and nanoindentation. Strain uncertainties (from CECT data) were evaluated following two consecutive unloaded scans. Residual strains were computed following unconfined compression (ex situ) testing. RESULTS: PTA and Hf-WD POM enabled the visualisation of structural features in cartilage, allowing DVC computation on the CECT data. Residual strains up to ∼10,000 µÉ› were detected up to the tidemark. Nanoindentation showed that PTA-staining caused an average ∼6-fold increase in articular cartilage stiffness, a ∼19-fold increase in reduced modulus and ∼7-fold increase in hardness, whereas Hf-WD POM-stained specimens had mechanical properties similar to pre-stain tissue. Micromechanical probing showed a 77% increase in cartilage surface stiffness after PTA-staining, in comparison to a 16% increase in stiffness after staining with Hf-WD POM. CONCLUSION: Hf-WD POM is a more suitable CESA solution compared to PTA for CECT imaging combined with DVC as it allowed visualisation of structural features in the cartilage tissue whilst more closely maintaining tissue mechanical properties.


Asunto(s)
Cartílago Articular , Medios de Contraste , Animales , Bovinos , Cartílago Articular/patología , Coloración y Etiquetado , Tomografía Computarizada por Rayos X/métodos , Rayos X
12.
J Biomed Mater Res B Appl Biomater ; 112(8): e35452, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39042645

RESUMEN

In vitro testing for evaluating degradation mode and rate of candidate biodegradable metals to be used as intravascular stents is crucial before going to in vivo animal models. In this study, we show that X-ray microfocus computed tomography (microCT) presents a key added value to visualize degradation mode and to evaluate degradation rate and material surface properties in 3D and at high resolution of large regions of interest. The in vitro degradation behavior of three candidate biodegradable stent materials was evaluated: pure iron (Fe), pure zinc (Zn), and a quinary Zn alloy (ZnAgCuMnZr). These metals were compared to a reference biostable cobaltchromium (CoCr) alloy. To compare the degradation mode and degradation rate evaluated with microCT, scanning electron microscopy (SEM) and inductively-coupled plasma (ICP) were included. We confirmed that Fe degrades very slowly but with desirable uniform surface corrosion. Zn degrades faster but exhibits localized deep pitting corrosion. The Zn alloy degrades at a similar rate as the pure Zn, but more homogeneously. However, the formation of deep internal dendrites was observed. Our study provides a detailed microCT-based comparison of essential surface and corrosion properties, with a structural characterization of the corrosion behavior, of different candidate stent materials in 3D in a non-destructive way.


Asunto(s)
Implantes Absorbibles , Ensayo de Materiales , Stents , Microtomografía por Rayos X , Zinc , Zinc/química , Aleaciones/química , Hierro/química , Corrosión
13.
Int J Biomed Imaging ; 2024: 3924036, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38634014

RESUMEN

The kidney's microstructure, which comprises a highly convoluted tubular and vascular network, can only be partially revealed using classical 2D histology. Considering that the kidney's microstructure is closely related to its function and is often affected by pathologies, there is a need for powerful and high-resolution 3D imaging techniques to visualize the microstructure. Here, we present how cryogenic contrast-enhanced microCT (cryo-CECT) allowed 3D visualization of glomeruli, tubuli, and vasculature. By comparing different contrast-enhancing staining agents and freezing protocols, we found that the preferred sample preparation protocol was the combination of staining with 1:2 hafnium(IV)-substituted Wells-Dawson polyoxometalate and freezing by submersion in isopentane at -78°C. This optimized protocol showed to be highly sensitive, allowing to detect small pathology-induced microstructural changes in a mouse model of mild trauma-related acute kidney injury after thorax trauma and hemorrhagic shock. In summary, we demonstrated that cryo-CECT is an effective 3D histopathological tool that allows to enhance our understanding of kidney tissue microstructure and their related function.

14.
Commun Biol ; 7(1): 315, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480819

RESUMEN

Skeletal development depends on coordinated angiogenesis and osteogenesis. Bone morphogenetic proteins direct bone formation in part by activating SMAD1/5 signaling in osteoblasts. However, the role of SMAD1/5 in skeletal endothelium is unknown. Here, we found that endothelial cell-conditional SMAD1/5 depletion in juvenile mice caused metaphyseal and diaphyseal hypervascularity, resulting in altered trabecular and cortical bone formation. SMAD1/5 depletion induced excessive sprouting and disrupting the morphology of the metaphyseal vessels, with impaired anastomotic loop formation at the chondro-osseous junction. Endothelial SMAD1/5 depletion impaired growth plate resorption and, upon long-term depletion, abrogated osteoprogenitor recruitment to the primary spongiosa. Finally, in the diaphysis, endothelial SMAD1/5 activity was necessary to maintain the sinusoidal phenotype, with SMAD1/5 depletion inducing formation of large vascular loops and elevated vascular permeability. Together, endothelial SMAD1/5 activity sustains skeletal vascular morphogenesis and function and coordinates growth plate remodeling and osteoprogenitor recruitment dynamics in juvenile mouse bone.


Asunto(s)
Angiogénesis , Osteogénesis , Ratones , Animales , Transducción de Señal , Huesos , Endotelio
15.
Nat Commun ; 15(1): 7444, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198396

RESUMEN

For high rate water electrolysers, minimising Ohmic losses through efficient gas bubble evacuation away from the active electrode is as important as minimising activation losses by improving the electrode's electrocatalytic properties. In this work, by a combined experimental and computational fluid dynamics (CFD) approach, we identify the topological parameters of flow-engineered 3-D electrodes that direct their performance towards enhanced bubble evacuation. In particular, we show that integrating Ni-based foam electrodes into a laterally-graded bi-layer zero-gap cell configuration allows for alkaline water electrolysis to become Proton Exchange Membrane (PEM)-like, even when keeping a state-of-the-art Zirfon diaphragm. Detailed CFD simulations, explicitly taking into account the entire 3-D electrode and cell topology, show that under a forced uniform upstream electrolyte flow, such a graded structure induces a high lateral velocity component in the direction normal to and away from the diaphragm. This work is therefore an invitation to start considering PEM-like cell designs for alkaline water electrolysis as well, in particular the use of square or rectangular electrodes in flow-through type electrochemical cells.

16.
Nat Commun ; 15(1): 2367, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531868

RESUMEN

The development of craniofacial skeletal structures is fascinatingly complex and elucidation of the underlying mechanisms will not only provide novel scientific insights, but also help develop more effective clinical approaches to the treatment and/or prevention of the numerous congenital craniofacial malformations. To this end, we performed a genome-wide analysis of RNA transcription from non-coding regulatory elements by CAGE-sequencing of the facial mesenchyme of human embryos and cross-checked the active enhancers thus identified against genes, identified by GWAS for the normal range human facial appearance. Among the identified active cis-enhancers, several belonged to the components of the PI3/AKT/mTORC1/autophagy pathway. To assess the functional role of this pathway, we manipulated it both genetically and pharmacologically in mice and zebrafish. These experiments revealed that mTORC1 signaling modulates craniofacial shaping at the stage of skeletal mesenchymal condensations, with subsequent fine-tuning during clonal intercalation. This ability of mTORC1 pathway to modulate facial shaping, along with its evolutionary conservation and ability to sense external stimuli, in particular dietary amino acids, indicate that the mTORC1 pathway may play a role in facial phenotypic plasticity. Indeed, the level of protein in the diet of pregnant female mice influenced the activity of mTORC1 in fetal craniofacial structures and altered the size of skeletogenic clones, thus exerting an impact on the local geometry and craniofacial shaping. Overall, our findings indicate that the mTORC1 signaling pathway is involved in the effect of environmental conditions on the shaping of craniofacial structures.


Asunto(s)
Transducción de Señal , Pez Cebra , Embarazo , Ratones , Animales , Femenino , Humanos , Proteínas , Diana Mecanicista del Complejo 1 de la Rapamicina , Dieta
17.
Transplant Direct ; 10(6): e1624, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38757048

RESUMEN

Background: Failure to close the abdominal wall after intestinal transplantation (ITx) or multivisceral Tx remains a surgical challenge. An attractive method is the use of nonvascularized rectus fascia (NVRF) in which both layers of the donor abdominal rectus fascia are used as an inlay patch without vascular anastomosis. How this graft integrates over time remains unknown. The study aims to provide a multilevel analysis of the neovascularization and integration process of the NVRF. Methods: Three NVRF-Tx were performed after ITx. Clinical, radiological, histological, and immunological data were analyzed to get insights into the neovascularization and integration process of the NVRF. Moreover, cryogenic contrast-enhanced microfocus computed tomography (microCT) analysis was used for detailed reconstruction of the vasculature in and around the NVRF (3-dimensional histology). Results: Two men (31- and 51-y-old) and 1 woman (49-y-old) underwent 2 multivisceral Tx and 1 combined liver-ITx, respectively. A CT scan showed contrast enhancement around the fascia graft at 5 days post-Tx. At 6 weeks, newly formed blood vessels were visualized around the graft with Doppler ultrasound. Biopsies at 2 weeks post-Tx revealed inflammation around the NVRF and early fibrosis. At 6 months, classical 2-dimensional histological analysis of a biopsy confirmed integration of the fascia graft with strong fibrotic reaction without signs of rejection. A cryogenic contrast-enhanced microCT scan of the same biopsy revealed the presence of microvasculature, enveloping and penetrating the donor fascia. Conclusions: We showed clinical, histological, and microCT evidence of the neovascularization and integration process of the NVRF after Tx.

18.
J Funct Biomater ; 14(7)2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37504883

RESUMEN

Facial trauma, bone resection due to cancer, periodontal diseases, and bone atrophy following tooth extraction often leads to alveolar bone defects that require bone regeneration in order to restore dental function. Guided bone regeneration using synthetic biomaterials has been suggested as an alternative approach to autologous bone grafts. The efficiency of bone substitute materials seems to be influenced by their physico-chemical characteristics; however, the debate is still ongoing on what constitutes optimal biomaterial characteristics. The purpose of this study was to develop an empirical model allowing the assessment of the bone regeneration potential of new biomaterials on the basis of their physico-chemical characteristics, potentially giving directions for the design of a new generation of dental biomaterials. A quantitative data set was built composed of physico-chemical characteristics of seven commercially available intra-oral bone biomaterials and their in vivo response. This empirical model allowed the identification of the construct parameters driving optimized bone formation. The presented model provides a better understanding of the influence of driving biomaterial properties in the bone healing process and can be used as a tool to design bone biomaterials with a more controlled and custom-made composition and structure, thereby facilitating and improving the clinical translation.

19.
Sci Rep ; 13(1): 2191, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750646

RESUMEN

Cochlear implant restores hearing loss through electrical stimulation of the hearing nerve from within the cochlea. Unfortunately, surgical implantation of this neuroprosthesis often traumatizes delicate intracochlear structures, resulting in loss of residual hearing and compromising hearing in noisy environments and appreciation of music. To avoid cochlear trauma, insertion techniques and devices have to be adjusted to the cochlear microanatomy. However, existing techniques were unable to achieve a representative visualization of the human cochlea: classical histology damages the tissues and lacks 3D perspective; standard microCT fails to resolve the cochlear soft tissues; and previously used X-ray contrast-enhancing staining agents are destructive. In this study, we overcame these limitations by performing contrast-enhanced microCT imaging (CECT) with a novel polyoxometalate staining agent Hf-WD POM. With Hf-WD POM-based CECT, we achieved nondestructive, high-resolution, simultaneous, 3D visualization of the mineralized and soft microstructures in fresh-frozen human cochleae. This enabled quantitative analysis of the true intracochlear dimensions and led to anatomical discoveries, concerning surgically-relevant microstructures: the round window membrane, the Rosenthal's canal and the secondary spiral lamina. Furthermore, we demonstrated that Hf-WD POM-based CECT enables quantitative assessment of these structures as well as their trauma.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Humanos , Microtomografía por Rayos X , Cóclea/patología , Implantación Coclear/métodos , Audición , Electrodos Implantados
20.
Hear Res ; 430: 108707, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36773540

RESUMEN

The risk of insertion trauma in cochlear implantation is determined by the interplay between individual cochlear anatomy and electrode insertion mechanics. Whereas patient anatomy cannot be changed, new surgical techniques, devices for cochlear monitoring, drugs, and electrode array designs are continuously being developed and tested, to optimize the insertion mechanics and prevent trauma. Preclinical testing of these developments is a crucial step in feasibility testing and optimization for clinical application. Human cadaveric specimens allow for the best simulation of an intraoperative setting. However, their availability is limited and it is not possible to conduct repeated, controlled experiments on the same sample. A variety of artificial cochlear models have been developed for electrode insertion studies, but none of them were both anatomically and mechanically representative for surgical insertion into an individual cochlea. In this study, we developed anatomically representative models of the scala tympani for surgical insertion through the round window, based on microCT images of individual human cochleae. The models were produced in transparent material using commonly-available 3D printing technology at a desired scale. The anatomical and mechanical accuracy of the produced models was validated by comparison with human cadaveric cochleae. Mechanical evaluation was performed by recording insertion forces, counting the number of inserted electrodes and grading tactile feedback during manual insertion of a straight electrode by experienced cochlear implant surgeons. Our results demonstrated that the developed models were highly representative for the anatomy of the original cochleae and for the insertion mechanics in human cadaveric cochleae. The individual anatomy of the produced models had a significant impact on the insertion mechanics. The described models have a promising potential to accelerate preclinical development and testing of atraumatic insertion techniques, reducing the need for human cadaveric material. In addition, realistic models of the cochlea can be used for surgical training and preoperative planning of patient-tailored cochlear implantation surgery.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Humanos , Rampa Timpánica/cirugía , Cóclea/diagnóstico por imagen , Cóclea/cirugía , Electrodos Implantados , Cadáver
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA