Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Genet ; 142(7): 949-964, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37198333

RESUMEN

The minichromosome maintenance (MCM) complex acts as a DNA helicase during DNA replication, and thereby regulates cell cycle progression and proliferation. In addition, MCM-complex components localize to centrosomes and play an independent role in ciliogenesis. Pathogenic variants in genes coding for MCM components and other DNA replication factors have been linked to growth and developmental disorders as Meier-Gorlin syndrome and Seckel syndrome. Trio exome/genome sequencing identified the same de novo MCM6 missense variant p.(Cys158Tyr) in two unrelated individuals that presented with overlapping phenotypes consisting of intra-uterine growth retardation, short stature, congenital microcephaly, endocrine features, developmental delay and urogenital anomalies. The identified variant affects a zinc binding cysteine in the MCM6 zinc finger signature. This domain, and specifically cysteine residues, are essential for MCM-complex dimerization and the induction of helicase activity, suggesting a deleterious effect of this variant on DNA replication. Fibroblasts derived from the two affected individuals showed defects both in ciliogenesis and cell proliferation. We additionally traced three unrelated individuals with de novo MCM6 variants in the oligonucleotide binding (OB)-fold domain, presenting with variable (neuro)developmental features including autism spectrum disorder, developmental delay, and epilepsy. Taken together, our findings implicate de novo MCM6 variants in neurodevelopmental disorders. The clinical features and functional defects related to the zinc binding residue resemble those observed in syndromes related to other MCM components and DNA replication factors, while de novo OB-fold domain missense variants may be associated with more variable neurodevelopmental phenotypes. These data encourage consideration of MCM6 variants in the diagnostic arsenal of NDD.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Microcefalia , Trastornos del Neurodesarrollo , Humanos , Cisteína/genética , Trastornos del Neurodesarrollo/genética , Proteínas de Ciclo Celular/genética , ADN Helicasas/genética , Microcefalia/genética , Fenotipo , Zinc , Discapacidad Intelectual/genética , Componente 6 del Complejo de Mantenimiento de Minicromosoma/genética
2.
Am J Hum Genet ; 106(3): 412-421, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142645

RESUMEN

Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification.


Asunto(s)
Edad de Inicio , Alelos , Encefalopatías/genética , Calcinosis/genética , Moléculas de Adhesión Celular/genética , Genes Recesivos , Adolescente , Adulto , Animales , Encefalopatías/diagnóstico por imagen , Calcinosis/diagnóstico por imagen , Niño , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Linaje
3.
Ann Surg ; 277(1): e1-e4, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35837901

RESUMEN

ABSTRACT: Endoscopic retrograde appendicitis therapy (ERAT) has emerged as a promising, non-invasive treatment for acute uncomplicated appendicitis (AUA). ERAT involves cannulation, appendicography, appendiceal stone extraction, appendiceal lumen irrigation, and stent deployment. Recent randomized trials comparing ERAT to laparoscopic appendectomy (LA) have provided promising results in terms of safety and efficacy of ERAT. If the current trajectory of research and development is maintained, ERAT will likely become a strong contender for the standard of care for AUA. Standardized training and credentialing for ERAT, akin to procedures established for endoscopic retrograde cholangiopancreatography, will be pivotal to global adoption of this modality.


Asunto(s)
Apendicitis , Laparoscopía , Humanos , Apendicitis/cirugía , Apendicectomía/métodos , Laparoscopía/métodos , Colangiopancreatografia Retrógrada Endoscópica , Enfermedad Aguda
4.
J Nanobiotechnology ; 21(1): 136, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101280

RESUMEN

It is essential to develop ultrasensitive biosensors for cancer detection and treatment monitoring. In the development of sensing platforms, metal-organic frameworks (MOFs) have received considerable attention as potential porous crystalline nanostructures. Core-shell MOF nanoparticles (NPs) have shown different diversities, complexities, and biological functionalities, as well as significant electrochemical (EC) properties and potential bio-affinity to aptamers. As a result, the developed core-shell MOF-based aptasensors serve as highly sensitive platforms for sensing cancer biomarkers with an extremely low limit of detection (LOD). This paper aimed to provide an overview of different strategies for improving selectivity, sensitivity, and signal strength of MOF nanostructures. Then, aptamers and aptamers-modified core-shell MOFs were reviewed to address their functionalization and application in biosensing platforms. Additionally, the application of core-shell MOF-assisted EC aptasensors for detection of several tumor antigens such as prostate-specific antigen (PSA), carbohydrate antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA-125), cytokeratin 19 fragment (CYFRA21-1), and other tumor markers were discussed. In conclusion, the present article reviews the advancement of potential biosensing platforms toward the detection of specific cancer biomarkers through the development of core-shell MOFs-based EC aptasensors.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Estructuras Metalorgánicas , Nanoestructuras , Masculino , Humanos , Estructuras Metalorgánicas/química , Biomarcadores de Tumor , Nanoestructuras/química , Aptámeros de Nucleótidos/química , Límite de Detección
5.
J Med Genet ; 59(10): 993-1001, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34952832

RESUMEN

PURPOSE: We sought to describe a disorder clinically mimicking cystic fibrosis (CF) and to elucidate its genetic cause. METHODS: Exome/genome sequencing and human phenotype ontology data of nearly 40 000 patients from our Bio/Databank were analysed. RNA sequencing of samples from the nasal mucosa from patients, carriers and controls followed by transcriptome analysis was performed. RESULTS: We identified 13 patients from 9 families with a CF-like phenotype consisting of recurrent lower respiratory infections (13/13), failure to thrive (13/13) and chronic diarrhoea (8/13), with high morbidity and mortality. All patients had biallelic variants in AGR2, (1) two splice-site variants, (2) gene deletion and (3) three missense variants. We confirmed aberrant AGR2 transcripts caused by an intronic variant and complete absence of AGR2 transcripts caused by the large gene deletion, resulting in loss of function (LoF). Furthermore, transcriptome analysis identified significant downregulation of components of the mucociliary machinery (intraciliary transport, cilium organisation), as well as upregulation of immune processes. CONCLUSION: We describe a previously unrecognised autosomal recessive disorder caused by AGR2 variants. AGR2-related disease should be considered as a differential diagnosis in patients presenting a CF-like phenotype. This has implications for the molecular diagnosis and management of these patients. AGR2 LoF is likely the disease mechanism, with consequent impairment of the mucociliary defence machinery. Future studies should aim to establish a better understanding of the disease pathophysiology and to identify potential drug targets.


Asunto(s)
Fibrosis Quística , Mucoproteínas/genética , Proteínas Oncogénicas/genética , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Exoma , Humanos , Mutación , Fenotipo
6.
Molecules ; 28(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687068

RESUMEN

Efficient and excellent nanoparticles are required for the degradation of organic dyes in photocatalysis. In this study, silver-manganese oxide nanoparticles (Ag-Mn-NPs) were synthesized through a wet chemical precipitation method and characterized as an advanced catalyst that has enhanced photocatalytic activity under sunlight irradiation. The nanoparticles were characterized using scanning electron microscopy (SEM), XRD, UV-vis light spectra, and energy-dispersive X-ray (EDX) spectroscopy, revealing their spherical and agglomerated form. The EDX spectra confirmed the composition of the nanoparticles, indicating their presence in oxide form. These bimetallic oxide nanoparticles were employed as photocatalysts for the degradation of malachite green (MG) dye under sunlight irradiation in an aqueous medium. The study investigated the effects of various parameters, such as irradiation time, catalyst dosage, recovered catalyst dosage, dye concentration, and pH, on the dye's photodegradation. The results showed that Ag-Mn oxide nanoparticles exhibited high photocatalytic activity, degrading 92% of the dye in 100 min. A longer irradiation time led to increased dye degradation. Moreover, a higher catalyst dosage resulted in a higher dye degradation percentage, with 91% degradation achieved using 0.0017 g of the photocatalyst in 60 min. Increasing the pH of the medium also enhanced the dye degradation, with 99% degradation achieved at pH 10 in 60 min. However, the photodegradation rate decreased with increasing dye concentration. The Ag-Mn oxide nanoparticles demonstrate excellent potential as a reliable visible-light-responsive photocatalyst for the efficient degradation of organic pollutants in wastewater treatment.

7.
Clin Genet ; 101(2): 247-254, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34708404

RESUMEN

Biallelic changes in the ZNFX1 gene have been recently reported to cause severe familial immunodeficiency. Through a search of our bio/databank with information from genetic testing of >55 000 individuals, we identified nine additional patients from seven families with six novel homozygous ZNFX1 variants. Consistent with the previously described phenotype, our patients suffered from monocytosis, thrombocytopenia, hepatosplenomegaly, recurrent infections, and lymphadenopathy. The two most severely affected probands also had renal involvement and clinical presentations compatible with hemophagocytic lymphohistiocytosis. The disease was less lethal among our patients than previously reported. We identified two missense changes, two variants predicted to result in complete protein loss through nonsense-mediated decay, and two frameshift changes that likely introduce a truncation. Our findings (i) independently confirm the role of ZNFX1 in primary genetic immunodeficiency, (ii) expand the genetic and clinical spectrum of ZNFX1-related disease, and (iii) illustrate the utility of large, well-curated, and continually updated genotype-phenotype databases in resolving molecular diagnoses of patients with initially negative genetic testing findings.


Asunto(s)
Alelos , Antígenos de Neoplasias/genética , Enfermedades Hematológicas/diagnóstico , Enfermedades Hematológicas/genética , Mutación , Enfermedades de Inmunodeficiencia Primaria/diagnóstico , Enfermedades de Inmunodeficiencia Primaria/genética , Mapeo Cromosómico , Biología Computacional/métodos , Análisis Mutacional de ADN , Bases de Datos Genéticas , Facies , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Linaje , Fenotipo
8.
Anticancer Drugs ; 33(1): e444-e452, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34520434

RESUMEN

Oridonin (ORI) is known to pose anticancer activity against cancer, which could induce the therapeutic impact of chemotherapy drugs. However, such simple combinations have numerous side effects such as higher toxicity to normal cells and tissues. To enhance the therapeutic effects with minimal side effects, here we used ORI in combination with cisplitin (CIS) against different esophageal squamous cell carcinoma (ESCC) cell lines in vitro, to investigate the synergistic anticancer effects of the two drugs against ESCC. Calcusyn Graphing Software was used to assess the synergistic effect. Apoptosis, wound healing and cell invasion assay were conducted to further confirm the synergistic effects of ORI and CIS. Intracellular glutathione (GSH) and reactive oxygen species assay, immunofluorescence staining and western blot were used to verify the mechanism of synergistic cytotoxicity. ORI and CIS pose selective synergistic effects on ESCC cells with p53 mutations. Moreover, we found that the synergistic effects of these drugs are mediated by GSH/ROS systems, such that intracellular GSH production was inhibited, whereas the ROS generation was induced following ORI and CIS application. In addition, we noted that DNA damage was induced as in response to ORI and CIS treatment. Overall, these results suggest that ORI can synergistically enhance the effect of CIS, and GSH deficiency and p53 mutation, might be biomarkers for the combinational usage of ORI and CIS.


Asunto(s)
Cisplatino/farmacología , Diterpenos de Tipo Kaurano/farmacología , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/administración & dosificación , Diterpenos de Tipo Kaurano/administración & dosificación , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Glutatión/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/efectos de los fármacos
9.
J Am Soc Nephrol ; 32(1): 223-228, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33020172

RESUMEN

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) are one of the most common malformations identified in the fetal stage. Bilateral renal agenesis (BRA) represents the most severe and fatal form of CAKUT. Only three genes have been confirmed to have a causal role in humans (ITGA8, GREB1L, and FGF20). METHODS: Genome sequencing within a diagnostic setting and combined data repository analysis identified a novel gene. RESULTS: Two patients presented with BRA, detected during the prenatal period, without additional recognizable malformations. They had parental consanguinity and similarly affected, deceased siblings, suggesting autosomal recessive inheritance. Evaluation of homozygous regions in patient 1 identified a novel, nonsense variant in GFRA1 (NM_001348097.1:c.676C>T, p.[Arg226*]). We identified 184 patients in our repository with renal agenesis and analyzed their exome/genome data. Of these 184 samples, 36 were from patients who presented with isolated renal agenesis. Two of them had loss-of-function variants in GFRA1. The second patient was homozygous for a frameshift variant (NM_001348097.1:c.1294delA, p.[Thr432Profs*13]). The GFRA1 gene encodes a receptor on the Wolffian duct that regulates ureteric bud outgrowth in the development of a functional renal system, and has a putative role in the pathogenesis of Hirschsprung disease. CONCLUSIONS: These findings strongly support the causal role of GFRA1-inactivating variants for an autosomal recessive, nonsyndromic form of BRA. This knowledge will enable early genetic diagnosis and better genetic counseling for families with BRA.


Asunto(s)
Alelos , Anomalías Congénitas/genética , Genes Recesivos , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Enfermedades Renales/congénito , Riñón/anomalías , Exoma , Femenino , Asesoramiento Genético , Predisposición Genética a la Enfermedad , Variación Genética , Genoma Humano , Homocigoto , Humanos , Riñón/patología , Enfermedades Renales/genética , Masculino , Mutación , Linaje , Análisis de Secuencia de ADN , Sistema Urinario/patología
10.
Carcinogenesis ; 42(6): 864-873, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33608694

RESUMEN

Biological rhythms regulate physiological activities. Shiftwork disrupts normal circadian rhythms and may increase the risk of cancer through unknown mechanisms. To mimic environmental light/dark changes encountered by shift workers, a protocol called 'chronic jet lag (CJL)' induced by repeatedly shifting light-dark cycles has been used. Here, we subjected mice to CJL by advancing light-dark cycle by 6 h every 2 days, and conducted RNA sequencing to analyze the expression profile and molecular signature in the brain areas of prefrontal cortex and nucleus accumbens. We also performed positron emission tomography (PET) imaging to monitor changes related to glucose metabolism in brain. Our results reveal systematic reprogramming of gene expression associated with cancer-related pathways and metabolic pathways in prefrontal cortex and nucleus accumbens. PET imaging indicates that glucose uptake level was significantly reduced in whole brain as well as the individual brain regions. Moreover, qPCR analysis describes that the expression levels of cancer-related genes were altered in prefrontal cortex and nucleus accumbens. Overall, these results suggest a molecular and metabolic link with CJL-mediated cancer risk, and generate hypotheses on how CJL increases the susceptibility to cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica , Síndrome Jet Lag/complicaciones , Núcleo Accumbens/patología , Fotoperiodo , Corteza Prefrontal/patología , Animales , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/etiología , Neoplasias Encefálicas/metabolismo , Enfermedad Crónica , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/metabolismo , Corteza Prefrontal/metabolismo , RNA-Seq
11.
Genet Med ; 23(8): 1551-1568, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33875846

RESUMEN

PURPOSE: Within this study, we aimed to discover novel gene-disease associations in patients with no genetic diagnosis after exome/genome sequencing (ES/GS). METHODS: We followed two approaches: (1) a patient-centered approach, which after routine diagnostic analysis systematically interrogates variants in genes not yet associated to human diseases; and (2) a gene variant centered approach. For the latter, we focused on de novo variants in patients that presented with neurodevelopmental delay (NDD) and/or intellectual disability (ID), which are the most common reasons for genetic testing referrals. Gene-disease association was assessed using our data repository that combines ES/GS data and Human Phenotype Ontology terms from over 33,000 patients. RESULTS: We propose six novel gene-disease associations based on 38 patients with variants in the BLOC1S1, IPO8, MMP15, PLK1, RAP1GDS1, and ZNF699 genes. Furthermore, our results support causality of 31 additional candidate genes that had little published evidence and no registered OMIM phenotype (56 patients). The phenotypes included syndromic/nonsyndromic NDD/ID, oral-facial-digital syndrome, cardiomyopathies, malformation syndrome, short stature, skeletal dysplasia, and ciliary dyskinesia. CONCLUSION: Our results demonstrate the value of data repositories which combine clinical and genetic data for discovering and confirming gene-disease associations. Genetic laboratories should be encouraged to pursue such analyses for the benefit of undiagnosed patients and their families.


Asunto(s)
Exoma , Discapacidad Intelectual , Secuencia de Bases , Exoma/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso , Fenotipo , Secuenciación del Exoma
12.
Clin Genet ; 99(4): 588-593, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33439489

RESUMEN

Congenital cranial dysinnervation disorders (CCDDs) are a heterogeneous group of neurodevelopmental phenotypes caused by a primary disturbance of innervation due to deficient, absent, or misguided cranial nerves. Although some CCDDs genes are known, several clinical phenotypes and their aetiologies remain to be elucidated. We describe a 12-year-old boy with hypotonia, developmental delay, sensorineural hearing loss, and keratoconjunctivitis due to lack of corneal reflex. He had a long expressionless face, severe oromotor dysfunction, bilateral agenesis/severe hypoplasia of the VIII nerve with marked atresia of the internal auditory canals and cochlear labyrinth malformation. Trio-exome sequencing identified a homozygous loss of function variant in the NEUROG1 gene (NM_006161.2: c.202G > T, p.Glu68*). NEUROG1 is considered a causal candidate for CCDDs based on (i) the previous report of a patient with a homozygous gene deletion and developmental delay, deafness due to absent bilateral VIII nerves, and severe oromotor dysfunction; (ii) a second patient with a homozygous NEUROG1 missense variant and corneal opacity, absent corneal reflex and intellectual disability; and (iii) the knockout mouse model phenotype which highly resembles the disorder observed in humans. Our findings support the growing compelling evidence that loss of NEUROG1 leads to a very distinctive disorder of cranial nerves development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Nervio Coclear/anomalías , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Nervio Trigémino/anomalías , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Niño , Discapacidades del Desarrollo/genética , Enanismo/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Discapacidad Intelectual/genética , Queratoconjuntivitis/genética , Masculino , Hipotonía Muscular/genética , Proteínas del Tejido Nervioso/fisiología
13.
Brain ; 143(8): 2388-2397, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32705143

RESUMEN

Gamma-aminobutyric acid (GABA) and glutamate are the most abundant amino acid neurotransmitters in the brain. GABA, an inhibitory neurotransmitter, is synthesized by glutamic acid decarboxylase (GAD). Its predominant isoform GAD67, contributes up to ∼90% of base-level GABA in the CNS, and is encoded by the GAD1 gene. Disruption of GAD1 results in an imbalance of inhibitory and excitatory neurotransmitters, and as Gad1-/- mice die neonatally of severe cleft palate, it has not been possible to determine any potential neurological dysfunction. Furthermore, little is known about the consequence of GAD1 disruption in humans. Here we present six affected individuals from six unrelated families, carrying bi-allelic GAD1 variants, presenting with developmental and epileptic encephalopathy, characterized by early-infantile onset epilepsy and hypotonia with additional variable non-CNS manifestations such as skeletal abnormalities, dysmorphic features and cleft palate. Our findings highlight an important role for GAD1 in seizure induction, neuronal and extraneuronal development, and introduce GAD1 as a new gene associated with developmental and epileptic encephalopathy.


Asunto(s)
Epilepsia/genética , Glutamato Descarboxilasa/genética , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/genética , Anomalías Múltiples/genética , Edad de Inicio , Alelos , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Mutación
14.
J Nanobiotechnology ; 19(1): 178, 2021 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-34120609

RESUMEN

BACKGROUNDS: One of the most common complications in diabetic nephropathy is generation of high levels of ROS which can be regulated by herbal antioxidants. However, polyphenols like calycosin, the bioactive compound of Radix astragali suffer from low solubility and poor bioavailability. METHODS: Therefore, in the present study, calycosin-loaded nanoliposomes were fabricated and characterized by TEM, DLS and FTIR techniques. Afterwards, the drug loading (DL) and entrapment efficiency (EE), drug release, solubility, stability, and pharmacodynamic assays were performed. Finally, the antinephropathic effects of calycosin-loaded-nanoliposomes on mitochondria of kidney cells were explored by MTT, ROS, MDA, mitochondrial respiratory function assays. RESULTS: The result showed that the size, hydrodynamic radius, zeta potential, EE, and DL were, 80 nm, 133.99 ± 21.44 nm, - 20.53 ± 3.57, 88.37 ± 2.28%, and 7.48 ± 1.19%, respectively. The outcomes of in vitro release assay showed that calycosin-loaded nanoliposomes were significantly slow-release in dialysis media with pH 1.2, pH 6.9 and pH 7.4, at about 30 min, the dissolution of calycosin from nanoliposome became almost complete, and after 2 months, the calycosin-loaded nanoliposomes were still stable. Pharmacokinetic assay revealed that the AUC0-t of calycosin in calycosin-loaded nanoliposome group was 927.39 ± 124.91 µg/L*h, which was 2.26 times than that of the free calycosin group (**P < 0.01). Additionally, the MRT0-t and t1/2 of calycosin in the calycosin-loaded nanoliposome group were prolonged by 1.54 times and 1.33 times than that of free calycosin group, respectively (*P < 0.05). Finally, it was shown that calycosin-loaded nanoliposomes regulated the viability, ROS production, lipid peroxidation and function of mitochondria in kidney cells of diabetic rats as a model of diabetic nephropathy. CONCLUSION: In conclusion it may be suggested that new therapies based on nano-formulated calycosin can restore mitochondrial function which can improve diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas/tratamiento farmacológico , Isoflavonas/química , Isoflavonas/farmacología , Liposomas/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Animales , Antioxidantes , Astragalus propinquus , Disponibilidad Biológica , Diabetes Mellitus Experimental , Liberación de Fármacos , Medicamentos Herbarios Chinos , Isoflavonas/uso terapéutico , Riñón , Peroxidación de Lípido , Masculino , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley
16.
J Clin Microbiol ; 58(5)2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32161092

RESUMEN

The new decade of the 21st century (2020) started with the emergence of a novel coronavirus known as SARS-CoV-2 that caused an epidemic of coronavirus disease (COVID-19) in Wuhan, China. It is the third highly pathogenic and transmissible coronavirus after severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in humans. The source of origin, transmission to humans, and mechanisms associated with the pathogenicity of SARS-CoV-2 are not yet clear, however, its resemblance to SARS-CoV and several other bat coronaviruses was recently confirmed through genome sequencing-related studies. The development of therapeutic strategies is necessary in order to prevent further epidemics and cure infections. In this review, we summarize current information about the emergence, origin, diversity, and epidemiology of three pathogenic coronaviruses with a specific focus on the current outbreak in Wuhan, China. Furthermore, we discuss the clinical features and potential therapeutic options that may be effective against SARS-CoV-2.


Asunto(s)
Betacoronavirus/genética , Betacoronavirus/patogenicidad , Infecciones por Coronavirus/terapia , Infecciones por Coronavirus/virología , Neumonía Viral/terapia , Neumonía Viral/virología , Zoonosis/terapia , Zoonosis/virología , Animales , COVID-19 , China/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/patología , Brotes de Enfermedades , Variación Genética , Genoma Viral/genética , Humanos , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/patología , SARS-CoV-2 , Zoonosis/epidemiología , Zoonosis/patología
17.
Clin Genet ; 98(1): 56-63, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32323311

RESUMEN

Recently, ADAMTS19 was identified as a novel causative gene for autosomal recessive heart valve disease (HVD), affecting mainly the aortic and pulmonary valves. Exome sequencing and data repository (CentoMD) analyses were performed to identify patients with ADAMTS19 variants (two families). A third family was recognized based on cardiac phenotypic similarities and SNP array homozygosity. Three novel loss of function (LoF) variants were identified in six patients from three families. Clinically, all patients presented anomalies of the aortic/pulmonary valves, which included thickening of valve leaflets, stenosis and insufficiency. Three patients had (recurrent) subaortic membrane, suggesting that ADAMTS19 is the first gene identified related to discrete subaortic stenosis. One case presented a bi-commissural pulmonary valve. All patients displayed some degree of atrioventricular valve insufficiency. Other cardiac anomalies included atrial/ventricular septal defects, persistent ductus arteriosus, and mild dilated ascending aorta. Our findings confirm that biallelic LoF variants in ADAMTS19 are causative of a specific and recognizable cardiac phenotype. We recommend considering ADAMTS19 genetic testing in all patients with multiple semilunar valve abnormalities, particularly in the presence of subaortic membrane. ADAMTS19 screening in patients with semilunar valve abnormalities is needed to estimate the frequency of the HVD related phenotype, which might be not so rare.


Asunto(s)
Proteínas ADAMTS/genética , Variación Genética/genética , Cardiopatías Congénitas/genética , Enfermedades de las Válvulas Cardíacas/genética , Aorta/anomalías , Niño , Preescolar , Femenino , Defectos del Tabique Interatrial/genética , Defectos del Tabique Interventricular/genética , Válvulas Cardíacas/anomalías , Ventrículos Cardíacos/anomalías , Humanos , Masculino , Fenotipo
18.
Extremophiles ; 24(4): 447-473, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32488508

RESUMEN

Pigments are an essential part of everyday life on Earth with rapidly growing industrial and biomedical applications. Synthetic pigments account for a major portion of these pigments that in turn have deleterious effects on public health and environment. Such drawbacks of synthetic pigments have shifted the trend to use natural pigments that are considered as the best alternative to synthetic pigments due to their significant properties. Natural pigments from microorganisms are of great interest due to their broader applications in the pharmaceutical, food, and textile industry with increasing demand among the consumers opting for natural pigments. To fulfill the market demand of natural pigments new sources should be explored. Cold-adapted bacteria and fungi in the cryosphere produce a variety of pigments as a protective strategy against ecological stresses such as low temperature, oxidative stresses, and ultraviolet radiation making them a potential source for natural pigment production. This review highlights the protective strategies and pigment production by cold-adapted bacteria and fungi, their industrial and biomedical applications, condition optimization for maximum pigment extraction as well as the challenges facing in the exploitation of cryospheric microorganisms for pigment extraction that hopefully will provide valuable information, direction, and progress in forthcoming studies.


Asunto(s)
Pigmentos Biológicos/metabolismo , Bacterias , Hongos , Rayos Ultravioleta
19.
Saudi Pharm J ; 28(8): 1004-1008, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32788835

RESUMEN

COVID-19 has created havoc in the world by causing thousands of demises in a short period of time. Up till now, several attempts have been made for potential therapeutics against SARS-COV2. In this retrospective, single-center study, we extracted data from 122 COVID-19, RT-PCR confirmed patients. who were treated with a new treatment strategy of lianhuaqingwen with Arbidol Hydrochloride. The patients were either asymptomatic or had mild symptoms for COVID-19 disease. Of 122 patients 21 (17.21%) patients developed severe conditions of COVID-19, while total 111 (90.9%) experienced mild symptoms such as fever in 93 (76.22%) patients, cough in 23 (20.17%) and muscle pain were observed in total 8 (7%) patients. Furthermore our newly applied drugs combination (Lianhuaqingwen and Arbidol Hydrochloride) showed therapeutic effects in 5-7 days in patients with mild symptoms with 98% recovery rate. These results indicate that COVID-19 patients with mild symptoms can be treated with Lianhuaqingwen and Arbidol Hydrochloride. However, extensive clinical investigations are required to confirm the effectiveness of these drugs.

20.
Lancet ; 402(10419): 2289, 2023 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-38103937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA