Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Curr Microbiol ; 77(11): 3538-3545, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32803419

RESUMEN

Lactic acid bacteria are widespread in various ecological niches with the excess of nutrients and have reduced capabilities to adapt to starvation. Among more than 280 Lactobacillus species known to the date, only five, including Lactobacillus hilgardii, carry in their genome the gene encoding for PII-like protein, one of the central regulators of cellular metabolism generally responding to energy- and carbon-nitrogen status in many free-living Bacteria, Archaea and in plant chloroplasts. In contrast to the classical PII encoding genes, in L. hilgardii genome the gene for PII homologue is located within the potABCD operon, encoding the ABC transporter for polyamines. Based on the unique genetic context and low sequence identity with genes of any other so-far characterized PII subfamilies, we termed this gene potN (Pot-protein, Nucleotide-binding). The second specific feature of L. hilgardii genome is that many genes encoding the proteins with similar function are present in two copies, while with low mutual identity. Thus, L. hilgardii LMG 7934 genome carries two genes of glutamine synthetase with 55% identity. One gene is located within classical glnRA operon with the gene of GlnR-like transcriptional regulator, while the second is monocistronic. Together with the relative large genome of L. hilgardii as compared to other Lactobacilli (2.771.862 bp vs ~ 2.2 Mbp in median), these data suggest significant re-arrangements of the genome and a wider range of adaptive capabilities of L. hilgardii in comparison to other bacteria of the genus Lactobacillus.


Asunto(s)
Lactobacillus , Operón , Proteínas Bacterianas/genética , Secuencia de Bases , Lactobacillus/genética
2.
Microorganisms ; 9(6)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203637

RESUMEN

Crohn's disease (CD) is characterized by a chronic, progressive inflammation across the gastrointestinal tract with a series of exacerbations and remissions. A significant factor in the CD pathogenesis is an imbalance in gut microbiota composition, particularly the prevalence of Escherichia coli. In the present study, the genomes of sixty-three E. coli strains from the gut of patients with CD and healthy subjects were sequenced. In addition, eighteen E. coli-like metagenome-assembled genomes (MAGs) were reconstructed from the shotgun-metagenome sequencing data of fecal samples. The comparative analysis revealed the similarity of E. coli genomes regardless of the origin of the strain. The strains exhibited similar genetic patterns of virulence, antibiotic resistance, and bacteriocin-producing systems. The study showed antagonistic activity of E. coli strains and the metabolic features needed for their successful competition in the human gut environment. These observations suggest complex bacterial interactions within the gut which may affect the host and cause intestinal damage.

3.
Inflamm Bowel Dis ; 27(3): 418-433, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-32766755

RESUMEN

BACKGROUND: Several studies have highlighted the role of host-microbiome interactions in the pathogenesis of inflammatory bowel disease (IBD), resulting in an increasing amount of data mainly focusing on Western patients. Because of the increasing prevalence of IBD in newly industrialized countries such as those in Asia, the Middle East, and South America, there is mounting interest in elucidating the gut microbiota of these populations. We present a comprehensive analysis of several IBD-related biomarkers and gut microbiota profiles and functions of a unique population of patients with IBD and healthy patients from Kazan (Republic of Tatarstan, Russia). METHODS: Blood and fecal IBD biomarkers, serum cytokines, and fecal short-chain fatty acid (SCFA) content were profiled. Finally, fecal microbiota composition was analyzed by 16S and whole-genome shotgun sequencing. RESULTS: Fecal microbiota whole-genome sequencing confirmed the presence of classic IBD dysbiotic features at the phylum level, with increased abundance of Proteobacteria, Actinobacteria, and Fusobacteria and decreased abundance of Firmicutes, Bacteroidetes, and Verrucomicrobia. At the genus level, the abundance of both fermentative (SCFA-producing and hydrogen (H2)-releasing) and hydrogenotrophic (H2-consuming) microbes was affected in patients with IBD. This imbalance was confirmed by the decreased abundance of SCFA species in the feces of patients with IBD and the change in anaerobic index, which mirrors the redox status of the intestine. CONCLUSIONS: Our analyses highlighted how IBD-related dysbiotic microbiota-which are generally mainly linked to SCFA imbalance-may affect other important metabolic pathways, such as H2 metabolism, that are critical for host physiology and disease development.


Asunto(s)
Disbiosis , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Disbiosis/etnología , Heces , Humanos , Enfermedades Inflamatorias del Intestino/etnología , Tatarstán
4.
Front Microbiol ; 10: 1902, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31507546

RESUMEN

The human gut microbiome plays an important role both in health and disease. Use of antibiotics can alter gut microbiota composition, which can lead to various deleterious events. Here we report a whole genome sequencing metagenomic/genomic study of the intestinal microbiota changes caused by Helicobacter pylori (HP) eradication therapy. Using approaches for metagenomic data analysis we revealed a statistically significant decrease in alpha-diversity and relative abundance of Bifidobacterium adolescentis due to HP eradication therapy, while the relative abundance of Enterococcus faecium increased. We have detected changes in general metagenome resistome profiles as well: after HP eradication therapy, the ermB, CFX group, and tetQ genes were overrepresented, while tetO and tetW genes were underrepresented. We have confirmed these results with genome-resolved metagenomic approaches. MAG (metagenome-assembled genomes) abundance profiles have changed dramatically after HP eradication therapy. Focusing on ermB gene conferring resistance to macrolides, which were included in the HP eradication therapy scheme, we have shown a connection between antibiotic resistance genes (ARGs) and some overrepresented MAGs. Moreover, some E. faecium strains isolated from stool samples obtained after HP eradication have manifested greater antibiotic resistance in vitro in comparison to other isolates, as well as the higher number of ARGs conferring resistance to macrolides and tetracyclines.

5.
Data Brief ; 14: 458-461, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28831408

RESUMEN

The shotgun sequencing data presented in this report are related to the research article named "Gut microbiome shotgun sequencing in assessment of microbial community changes associated with H. pylori eradication therapy" (Khusnutdinova et al., 2016) [1]. Typically, the H. pylori eradication protocol includes a prolonged two-week use of the broad-spectrum antibiotics. The presented data on the whole-genome sequencing of the total DNA from stool samples of patients before the start of the eradication, immediately after eradication and several weeks after the end of treatment could help to profile the gut microbiota both taxonomically and functionally. The presented data together with those described in Glushchenko et al. (2017) [2] allow researchers to characterize the metagenomic profiles in which the use of antibiotics could result in dramatic changes in the intestinal microbiota composition. We perform 15 gut metagenomes from 5 patients with H. pylori infection, obtained through the shotgun sequencing on the SOLiD 5500 W platform. Raw reads are deposited in the ENA under project ID PRJEB21338.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA