Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 288(1957): 20210991, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34428968

RESUMEN

The health of reef-building corals has declined due to climate change and pollution. However, less is known about whether giant clams, reef-dwelling bivalves with a photosymbiotic partnership similar to that found in reef-building corals, are also threatened by environmental degradation. To compare giant clam health against a prehistoric baseline, we collected fossil and modern Tridacna shells from the Gulf of Aqaba, Northern Red Sea. After calibrating daily/twice-daily growth lines from the outer shell layer, we determined that modern individuals of all three species (Tridacna maxima, T. squamosa and T. squamosina) grew faster than Holocene and Pleistocene specimens. Modern specimens also show median shell organic δ15N values 4.2‰ lower than fossil specimens, which we propose is most likely due to increased deposition of isotopically light nitrate aerosols in the modern era. Nitrate fertilization accelerates growth in cultured Tridacna, so nitrate aerosol deposition may contribute to faster growth in modern wild populations. Furthermore, colder winter temperatures and past summer monsoons may have depressed fossil giant clam growth. Giant clams can serve as sentinels of reef environmental change, both to determine their individual health and the health of the reefs they inhabit.


Asunto(s)
Antozoos , Bivalvos , Animales , Cambio Climático , Fósiles , Humanos , Estaciones del Año
2.
PLoS One ; 18(1): e0278752, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36602996

RESUMEN

Valvometry, the electronic measurement of bivalve shell opening and closing, has been demonstrated to be a valuable biomonitoring technique in previous ecological and environmental studies. Valvometric data has been shown to relate significantly to pollution, predation, animal stress and feeding activity. However, there is a need for valvometric techniques applicable to coral reef environments, which may provide critical insights into reef resilience to ocean warming and acidification. Giant clams are endemic to coral reefs and hold great promise as valvometric recorders of light availability, productivity and other environmental variables. Despite this promise, prior valvometric work on giant clams has been limited by specialized hardware less accessible to developing countries where many coral reefs are found. Here we report on an open-source approach that uses off-the-shelf components to monitor smooth giant clam (Tridacna derasa) valve opening behavior, and tests this approach in the simulated reef environment of the Biosphere 2 Ocean. Valvometric data corroborates the influence of light availability on diurnal behavior of giant clams. The clams basked during daylight hours to expose their photosymbionts to light, and adopted a partially-closed defensive posture at night. The animals showed variations in the frequency of complete closures, with most occurring during night-time hours when the animals prioritize filter-feeding activity, clapping their valves to expel pseudofeces from their gills. Closure frequency showed a significant relation to pH and a significant lagged relationship to chlorophyll-a productivity, which are both a function of algal productivity in the Biosphere 2 Ocean tank. These results suggest that the animals fed on phytoplankton following periodic bloom events in the Biosphere 2 Ocean during the experiment. We propose that giant clams exhibit behavioral plasticity between individuals and populations, and advocate for the more widespread use of valvometry to enable comparative studies of reef environment and animal health.


Asunto(s)
Antozoos , Bivalvos , Animales , Arrecifes de Coral , Clorofila , Clorofila A , Fitoplancton , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA