Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sensors (Basel) ; 23(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37177688

RESUMEN

Altered tibiofemoral contact forces represent a risk factor for osteoarthritis onset and progression, making optimization of the knee force distribution a target of treatment strategies. Musculoskeletal model-based simulations are a state-of-the-art method to estimate joint contact forces, but they typically require laboratory-based input and skilled operators. To overcome these limitations, ambulatory methods, relying on inertial measurement units, have been proposed to estimated ground reaction forces and, consequently, knee contact forces out-of-the-lab. This study proposes the use of a full inertial-capture-based musculoskeletal modelling workflow with an underlying probabilistic principal component analysis model trained on 1787 gait cycles in patients with knee osteoarthritis. As validation, five patients with knee osteoarthritis were instrumented with 17 inertial measurement units and 76 opto-reflective markers. Participants performed multiple overground walking trials while motion and inertial capture methods were synchronously recorded. Moderate to strong correlations were found for the inertial capture-based knee contact forces compared to motion capture with root mean square error between 0.15 and 0.40 of body weight. The results show that our workflow can inform and potentially assist clinical practitioners to monitor knee joint loading in physical therapy sessions and eventually assess long-term therapeutic effects in a clinical context.


Asunto(s)
Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/terapia , Captura de Movimiento , Fenómenos Biomecánicos , Articulación de la Rodilla , Caminata , Marcha
2.
J Appl Biomech ; 39(5): 284-293, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37348849

RESUMEN

In this review, we elaborate on how musculoskeletal (MSK) modeling combined with dynamic movement simulation is gradually evolving from a research tool to a promising in silico tool to assist medical doctors and physical therapists in decision making by providing parameters relating to dynamic MSK function and loading. This review primarily focuses on our own and related work to illustrate the framework and the interpretation of MSK model-based parameters in patients with 3 different conditions, that is, degenerative joint disease, cerebral palsy, and adult spinal deformities. By selecting these 3 clinical applications, we also aim to demonstrate the differing levels of clinical readiness of the different simulation frameworks introducing in silico model-based biomarkers of motor function to inform MSK rehabilitation and treatment, with the application for adult spinal deformities being the most recent of the 3. Based on these applications, barriers to clinical integration and positioning of these in silico technologies within standard clinical practice are discussed in the light of specific challenges related to model assumptions, required level of complexity and personalization, and clinical implementation.

3.
Sensors (Basel) ; 22(9)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35590949

RESUMEN

Inertial capture (InCap) systems combined with musculoskeletal (MSK) models are an attractive option for monitoring 3D joint kinematics in an ecological context. However, the primary limiting factor is the sensor-to-segment calibration, which is crucial to estimate the body segment orientations. Walking, running, and stair ascent and descent trials were measured in eleven healthy subjects with the Xsens InCap system and the Vicon 3D motion capture (MoCap) system at a self-selected speed. A novel integrated method that combines previous sensor-to-segment calibration approaches was developed for use in a MSK model with three degree of freedom (DOF) hip and knee joints. The following were compared: RMSE, range of motion (ROM), peaks, and R2 between InCap kinematics estimated with different calibration methods and gold standard MoCap kinematics. The integrated method reduced the RSME for both the hip and the knee joints below 5°, and no statistically significant differences were found between MoCap and InCap kinematics. This was consistent across all the different analyzed movements. The developed method was integrated on an MSK model workflow, and it increased the sensor-to-segment calibration accuracy for an accurate estimate of 3D joint kinematics compared to MoCap, guaranteeing a clinical easy-to-use approach.


Asunto(s)
Articulación de la Rodilla , Caminata , Fenómenos Biomecánicos , Calibración , Marcha , Humanos , Rango del Movimiento Articular
4.
PLoS One ; 15(7): e0235966, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32702015

RESUMEN

Multi-scale simulations, combining muscle and joint contact force (JCF) from musculoskeletal simulations with adaptive mechanobiological finite element analysis, allow to estimate musculoskeletal loading and predict femoral growth in children. Generic linearly scaled musculoskeletal models are commonly used. This approach, however, neglects subject- and age-specific musculoskeletal geometry, e.g. femoral neck-shaft angle (NSA) and anteversion angle (AVA). This study aimed to evaluate the impact of proximal femoral geometry, i.e. altered NSA and AVA, on hip JCF and femoral growth simulations. Musculoskeletal models with NSA ranging from 120° to 150° and AVA ranging from 20° to 50° were created and used to calculate muscle and hip JCF based on the gait analysis data of a typically developing child. A finite element model of a paediatric femur was created from magnetic resonance images. The finite element model was morphed to the geometries of the different musculoskeletal models and used for mechanobiological finite element analysis to predict femoral growth trends. Our findings showed that hip JCF increase with increasing NSA and AVA. Furthermore, the orientation of the hip JCF followed the orientation of the femoral neck axis. Consequently, the osteogenic index, which is a function of cartilage stresses and defines the growth rate, barely changed with altered NSA and AVA. Nevertheless, growth predictions were sensitive to the femoral geometry due to changes in the predicted growth directions. Altered NSA had a bigger impact on the growth results than altered AVA. Growth simulations based on mechanobiological principles were in agreement with reported changes in paediatric populations.


Asunto(s)
Fémur/fisiología , Análisis de Elementos Finitos , Articulación de la Cadera/fisiología , Fenómenos Biomecánicos , Desarrollo Óseo , Niño , Simulación por Computador , Fémur/diagnóstico por imagen , Marcha , Articulación de la Cadera/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Músculo Esquelético/fisiología
5.
Biomech Model Mechanobiol ; 19(4): 1169-1185, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32676934

RESUMEN

Many biomedical, orthopaedic, and industrial applications are emerging that will benefit from personalized neuromusculoskeletal models. Applications include refined diagnostics, prediction of treatment trajectories for neuromusculoskeletal diseases, in silico design, development, and testing of medical implants, and human-machine interfaces to support assistive technologies. This review proposes how physics-based simulation, combined with machine learning approaches from big data, can be used to develop high-fidelity personalized representations of the human neuromusculoskeletal system. The core neuromusculoskeletal model features requiring personalization are identified, and big data/machine learning approaches for implementation are presented together with recommendations for further research.


Asunto(s)
Aprendizaje Automático , Modelos Anatómicos , Sistema Musculoesquelético/anatomía & histología , Sistema Nervioso/anatomía & histología , Fenómenos Biomecánicos , Humanos , Imagenología Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA