Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675559

RESUMEN

The rapid aging of the population worldwide presents a significant social and economic challenge, particularly due to osteoporotic fractures, primarily resulting from an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. While conventional therapies offer benefits, they also present limitations and a range of adverse effects. This study explores the protective impact of Neorhodomela munita ethanol extract (EN) on osteoporosis by modulating critical pathways in osteoclastogenesis and apoptosis. Raw264.7 cells and Saos-2 cells were used for in vitro osteoclast and osteoblast models, respectively. By utilizing various in vitro methods to detect osteoclast differentiation/activation and osteoblast death, it was demonstrated that the EN's potential to inhibit RANKL induced osteoclast formation and activation by targeting the MAPKs-NFATc1/c-Fos pathway and reducing H2O2-induced cell death through the downregulation of apoptotic signals. This study highlights the potential benefits of EN for osteoporosis and suggests that EN is a promising natural alternative to traditional treatments.


Asunto(s)
Apoptosis , Osteoblastos , Osteoclastos , Ligando RANK , Rhodophyta , Animales , Humanos , Ratones , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Etanol/química , Peróxido de Hidrógeno/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Ligando RANK/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Rhodophyta/química
2.
Molecules ; 28(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36838684

RESUMEN

Vascular calcification (VC) and osteoporosis are age-related diseases and significant risk factors for the mortality of elderly. VC and osteoporosis may share common risk factors such as renin-angiotensin system (RAS)-related hypertension. In fact, inhibitors of RAS pathway, such as angiotensin type 1 receptor blockers (ARBs), improved both vascular calcification and hip fracture in elderly. However, a sex-dependent discrepancy in the responsiveness to ARB treatment in hip fracture was observed, possibly due to the estrogen deficiency in older women, suggesting that blocking the angiotensin signaling pathway may not be effective to suppress bone resorption, especially if an individual has underlying osteoclast activating conditions such as estrogen deficiency. Therefore, it has its own significance to find alternative modality for inhibiting both vascular calcification and osteoporosis by directly targeting osteoclast activation to circumvent the shortcoming of ARBs in preventing bone resorption in estrogen deficient individuals. In the present study, a natural compound library was screened to find chemical agents that are effective in preventing both calcium deposition in vascular smooth muscle cells (vSMCs) and activation of osteoclast using experimental methods such as Alizarin red staining and Tartrate-resistant acid phosphatase staining. According to our data, citreoviridin (CIT) has both an anti-VC effect and anti-osteoclastic effect in vSMCs and in Raw 264.7 cells, respectively, suggesting its potential as an effective therapeutic agent for both VC and osteoporosis.


Asunto(s)
Aurovertinas , Resorción Ósea , Osteoporosis , Calcificación Vascular , Humanos , Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Resorción Ósea/metabolismo , Calcio/metabolismo , Estrógenos/farmacología , Músculo Liso Vascular , Miocitos del Músculo Liso , Osteoporosis/metabolismo , Calcificación Vascular/metabolismo , Animales , Ratones , Células RAW 264.7 , Aurovertinas/farmacología
3.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638927

RESUMEN

Recently published clinical trials involving the use of adipose-derived stem cells (ADSCs) indicated that approximately one-third of the studies were conducted on musculoskeletal disorders (MSD). MSD refers to a wide range of degenerative conditions of joints, bones, and muscles, and these conditions are the most common causes of chronic disability worldwide, being a major burden to the society. Conventional treatment modalities for MSD are not sufficient to correct the underlying structural abnormalities. Hence, ADSC-based cell therapies are being tested as a form of alternative, yet more effective, therapies in the management of MSDs. Therefore, in this review, MSDs subjected to the ADSC-based therapy were further categorized as arthritis, craniomaxillofacial defects, tendon/ligament related disorders, and spine disorders, and their brief characterization as well as the corresponding conventional therapeutic approaches with possible mechanisms with which ADSCs produce regenerative effects in disease-specific microenvironments were discussed to provide an overview of under which circumstances and on what bases the ADSC-based cell therapy was implemented. Providing an overview of the current status of ADSC-based cell therapy on MSDs can help to develop better and optimized strategies of ADSC-based therapeutics for MSDs as well as help to find novel clinical applications of ADSCs in the near future.


Asunto(s)
Tejido Adiposo/citología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Madre Mesenquimatosas/citología , Enfermedades Musculoesqueléticas/terapia , Medicina Regenerativa/métodos , Trasplante de Células Madre/métodos , Animales , Diferenciación Celular , Ensayos Clínicos como Asunto/métodos , Ensayos Clínicos como Asunto/estadística & datos numéricos , Humanos , Enfermedades Musculoesqueléticas/patología , Enfermedades Musculoesqueléticas/fisiopatología
4.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34360711

RESUMEN

The acute demise of stem cells following transplantation significantly compromises the efficacy of stem cell-based cell therapeutics for infarcted hearts. As the stem cells transplanted into the damaged heart are readily exposed to the hostile environment, it can be assumed that the acute death of the transplanted stem cells is also inflicted by the same environmental cues that caused massive death of the host cardiac cells. Pyroptosis, a highly inflammatory form of programmed cell death, has been added to the list of important cell death mechanisms in the damaged heart. However, unlike the well-established cell death mechanisms such as necrosis or apoptosis, the exact role and significance of pyroptosis in the acute death of transplanted stem cells have not been explored in depth. In the present study, we found that M1 macrophages mediate the pyroptosis in the ischemia/reperfusion (I/R) injured hearts and identified miRNA-762 as an important regulator of interleukin 1ß production and subsequent pyroptosis. Delivery of exogenous miRNA-762 prior to transplantation significantly increased the post-transplant survival of stem cells and also significantly ameliorated cardiac fibrosis and heart functions following I/R injury. Our data strongly suggest that suppressing pyroptosis can be an effective adjuvant strategy to enhance the efficacy of stem cell-based therapeutics for diseased hearts.


Asunto(s)
MicroARNs , Daño por Reperfusión Miocárdica , Piroptosis , Trasplante de Células Madre , Células Madre , Animales , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , MicroARNs/genética , MicroARNs/farmacología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/terapia , Piroptosis/efectos de los fármacos , Piroptosis/genética , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Células Madre/metabolismo , Células Madre/patología
5.
Biochem Biophys Res Commun ; 533(3): 442-448, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-32972748

RESUMEN

Bacillus cereus ATCC 14579 is a known polyhydroxybutyrate (PHB)-producing microorganism that possesses genes associated with PHB synthesis such as PhaA, PhaB, and PHA synthases. PhaA (i.e., thiolase) is the first enzyme in the PHA biosynthetic pathway, which catalyze the condensation of two acetyl-CoA molecules to acetoacetyl-CoA. Our study elucidated the crystal structure of PhaA in Bacillus cereus ATCC 14579 (BcTHL) in its apo- and CoA-bound forms. BcTHL adopts a type II biosynthetic thiolase structure by forming a tetramer. The crystal structure of CoA-complexed BcTHL revealed that the substrate binding site of BcTHL is constituted by different residues compared with other known thiolases. Our study also revealed that Arg221, a residue involved in ADP binding, undergoes a positional conformational change upon the binding of the CoA molecule.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/química , Bacillus cereus/enzimología , Proteínas Bacterianas/química , Dominio Catalítico , Coenzima A/química , Cristalografía por Rayos X , Hidroxibutiratos/metabolismo , Modelos Moleculares
6.
Biochem Biophys Res Commun ; 533(4): 824-830, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-32993959

RESUMEN

Glycine oxidase (GO) is an enzyme that catalyzes the oxidation of the primary and secondary amines of various chemicals, including glycine, and the enzyme has been applied in a variety of fields, such as biosensor and genetically modified glyphosate resistance plants. Here, we report that the gene product of BC0747 from Bacillus cereus (BcGO) shows oxidase activity for glycine and small d-amino acids, such as d-proline and d-alanine. We also determined the crystal structure of BcGO complexed with the FAD cofactor at a 2.36 Å resolution and revealed how the cofactor binds to the deep pocket of the enzyme. We performed the molecular docking calculation of the glycine substrate to the BcGO structure and identified how the carboxyl- and amine-groups of the d-amino acid are stabilized at the substrate binding site. Structural analysis of BcGO also provided information on the structural basis for the stereospecificity of the enzyme to d-amino acids. In addition, we placed the glyphosate molecule, a plant herbicide, at the substrate binding site, and explained how the mutation of Gly51 to arginine enhances enzyme activity.


Asunto(s)
Aminoácido Oxidorreductasas/química , Aminoácidos/química , Bacillus cereus/enzimología , Aminoácido Oxidorreductasas/metabolismo , Aminoácidos/metabolismo , Dominio Catalítico , Flavina-Adenina Dinucleótido/química , Glicina/análogos & derivados , Glicina/química , Glicina/metabolismo , Cinética , Modelos Moleculares , Unión Proteica , Estereoisomerismo , Glifosato
7.
Biochem Biophys Res Commun ; 533(4): 1177-1183, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33041004

RESUMEN

The glyoxylate cycle is an important anabolic pathway and acts under a C2 compound (such as acetic acid) rich condition in bacteria. The isocitrate lyase (ICL) enzyme catalyzes the first step in the glyoxylate cycle, which is the cleavage of isocitrate to glyoxylate and succinate. This enzyme is a metalo-enzyme that contains an Mg2+ or a Mn2+ion at the active site for enzyme catalysis. We expressed and purified ICL from Bacillus cereus (BcICL) and investigated its biochemical properties and metal usage through its enzyme activity and stability with various divalent metal ion. Based on the results, BcICL mainly utilized the Mg2+ ion for enzyme catalysis as well as the Mn2+, Ni2+ and Co2+ ions. To elucidate its molecular mechanisms, we determined the crystal structure of BcICL at 1.79 Å. Through this structure, we analyzed a tetrameric interaction of the protein. We also determined the BcICL structure in complex with both the metal and its products, glyoxylate and succinate at 2.50 Å resolution and revealed each ligand binding modes.


Asunto(s)
Bacillus cereus/enzimología , Isocitratoliasa/química , Dominio Catalítico , Cristalografía por Rayos X , Glioxilatos/química , Isocitratoliasa/metabolismo , Magnesio/química , Metales/química , Modelos Moleculares , Multimerización de Proteína , Alineación de Secuencia , Análisis de Secuencia de Proteína , Ácido Succínico/química
8.
Molecules ; 25(23)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271769

RESUMEN

Human adipose-derived stem cells (hASCs) can be isolated from fat tissue and have attracted interest for their potential therapeutic applications in metabolic disease. hASCs can be induced to undergo adipogenic differentiation in vitro by exposure to chemical agents or inductive growth factors. We investigated the effects and mechanism of differentiating hASC-derived white adipocytes into functional beige and brown adipocytes with isoliquiritigenin (ILG) treatment. Here, we showed that hASC-derived white adipocytes could promote brown adipogenesis by expressing both uncoupling protein 1 (UCP1) and PR/SET Domain 16 (PRDM16) following low-dose ILG treatments. ILG treatment of white adipocytes enhanced the expression of brown fat-specific markers, while the expression levels of c-Jun N-terminal kinase (JNK) signaling pathway proteins were downregulated. Furthermore, we showed that the inhibition of JNK phosphorylation contributed to white adipocyte differentiation into beige adipocytes, which was validated by the use of SP600125. We identified distinct regulatory effects of ILG dose responses and suggested that low-dose ILG induced the beige adipocyte potential of hASCs via JNK inhibition.


Asunto(s)
Adipocitos Marrones/citología , Adipogénesis , Chalconas/farmacología , Inhibidores Enzimáticos/farmacología , MAP Quinasa Quinasa 4/antagonistas & inhibidores , Células Madre Mesenquimatosas/citología , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/enzimología , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/enzimología
9.
Exp Cell Res ; 359(1): 235-242, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28755990

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive pulmonary vascular disease which is associated with pulmonary arterial endothelial cells (PAEC) dysfunction and pulmonary arterial smooth muscle cells proliferation. Moreover, inflammation is contributing a critical role in EC dysfunction and remains elusive. Nuclear factor-kappa B (NF-κB) is a master transcriptional regulator in various cardiovascular pathologies; but, NF-κB's role in EC dysfunction in unknown. Our previous study using cardiac and lung specific IκBα mutant mice (3M and IKBM) showed that PAH induced right ventricular hypertrophy (RVH) was prevented in monocrotaline (MCT) treated 3M and IKBM mice, compared to the wild-type mice. Recently, microRNAs (miRNAs) have emerged as a new class of post-transcriptional regulators in vascular remodeling; but, NF-κB regulated miRNA modulation in EC dysfunction is unknown. Using miRNA array analysis, we identified miR-130a which is upregulated in MCT-induced PAH mouse model, as a possible candidate to study. We showed that overexpressing miR-130a in lung microvascular endothelial cells (MVEC) promoted activation of α-smooth muscle actin, a critical component in endothelial-to-mesenchymal transition in EC remodeling. In this study, we demonstrated that bone morphogenetic protein receptor 2 (BMPR2) was a target for miR-130a and miR-130a was regulated by NF-κB which controlled apoptosis and vascular genes in MVEC. The findings reveal that NF-κB-mediated miR-130a modulation is critical in lung vascular remodeling.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Pulmón/irrigación sanguínea , MicroARNs/metabolismo , Microvasos/metabolismo , FN-kappa B/metabolismo , Remodelación Vascular , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Secuencia de Bases , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Regulación de la Expresión Génica/efectos de los fármacos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Mesodermo/patología , Ratones Transgénicos , MicroARNs/genética , Modelos Biológicos , Regiones Promotoras Genéticas/genética , Transcripción Genética/efectos de los fármacos , Factor de Crecimiento Transformador beta1/farmacología , Remodelación Vascular/efectos de los fármacos , Remodelación Vascular/genética
10.
Cell Biochem Funct ; 36(5): 263-272, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29920999

RESUMEN

Adipose-derived stromal vascular fractions (SVFs) are a heterogeneous collection of cells, and their regenerative modality has been applied in various animal experiments and clinical trials. Despite the attractive advantages of SVFs in clinical interventions, the recent status of clinical studies involving the application of SVFs in many diseases has not been fully evaluated. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can differentiate into a variety of cell types despite their low numbers in heart tissue. Here, we sought to determine if SVF implantation into impaired heart tissue affected endogenous MSCs in the heart. Therefore, we investigated the expression levels of proteins associated with oxidation, inflammation, and apoptosis in MSCs co-cultured with adipose-derived adherent stromal cells (ADASs) from 6 donors' SVFs under oxidative stress conditions for their roles in many physiological processes in the heart. Interestingly, p53 pathway proteins and mitogen-activated protein kinase (MAPK) signalling pathway components were up-regulated by H2 O2 but exhibited a downward trend in MSCs co-cultured with ADASs. These data suggest that ADASs may inhibit oxidative stress-induced apoptosis in MSCs via the p53 and MAPK pathways. Our findings also suggest that the positive effects of SVF implantation into damaged heart tissue may be attributed to the various responses of MSCs. This finding may provide new insights for the clinical application of adipose-derived SVF transplantation in cardiac diseases. SIGNIFICANCE OF THE STUDY: We investigated the expression levels of proteins associated with oxidation, inflammation, and apoptosis in MSCs co-cultured with isolated ADASs from 6 donors' SVFs under oxidative stress conditions. Our results imply that isolated ADASs from SVFs may inhibit oxidative stress-induced cell cycle arrest and/or apoptosis in MSCs via a p53-dependent pathway. Furthermore, we identified an anti-apoptotic mechanism involving oxidative stress-induced apoptosis by adipose-derived ADASs in MSCs for the first time. Our findings suggest that the positive effects of SVF implantation into damaged heart tissue may be attributed to the various actions of MSCs.


Asunto(s)
Adipocitos/metabolismo , Apoptosis , Células del Estroma/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/patología , Adulto , Apoptosis/efectos de los fármacos , Técnicas de Cocultivo , Femenino , Humanos , Peróxido de Hidrógeno/farmacología , Masculino , Persona de Mediana Edad , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Células del Estroma/efectos de los fármacos , Células del Estroma/patología , Proteína p53 Supresora de Tumor/metabolismo
11.
Cell Physiol Biochem ; 44(1): 53-65, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29131029

RESUMEN

BACKGROUND/AIMS: Stromal vascular fraction (SVF) cells are a mixed cell population, and their regenerative capacity has been validated in various therapeutic models. The purpose of this study was to investigate the regenerative mechanisms utilized by implanted SVF cells. Using an in vitro co-culture system, we sought to determine whether SVF implantation into impaired tissue affects endogenous mesenchymal stem cell (MSC) differentiation; MSCs can differentiate into a variety of cell types, and they have a strong regenerative capacity despite their low numbers in impaired tissue. METHODS: Adipose-derived SVF cells obtained from four donors were co-cultured with bone marrow-derived MSCs, and the differential expression of osteogenic markers and osteogenic differentiation inducers over time was analyzed in mono-cultured MSCs and MSCs co-cultured with SVF cells. RESULTS: The co-cultivation of MSCs with SVF cells significantly and mutually induced the expression of osteogenic-specific markers via paracrine and/or autocrine regulation but did not induce adipocyte, chondrocyte or myoblast marker expression. More surprisingly, subsequent osteogenesis and/or comparable effects were rapidly induced within 48 h. CONCLUSION: To the best of our knowledge, this is the first study in which osteogenesis and/or comparable effects were rapidly induced in bone marrow-derived MSCs and adipose-derived SVF cells through co-cultivation. Our findings suggest that the positive effects of SVF implantation into impaired bone may be attributed to the rapid induction of MSC osteogenesis, and the transplantation of co-cultured and preconditioned SVF cells and/or MSCs may be more effective than the transplantation of untreated cells for the treatment of bone defects.


Asunto(s)
Células Madre Mesenquimatosas/citología , Células del Estroma/citología , Tejido Adiposo/citología , Adulto , Células de la Médula Ósea/citología , Diferenciación Celular , Células Cultivadas , Técnicas de Cocultivo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogénesis , Osteopontina/genética , Osteopontina/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Células del Estroma/metabolismo
12.
Int J Med Sci ; 14(9): 911-919, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28824330

RESUMEN

Stromal vascular fractions (SVFs) are a heterogeneous collection of cells within adipose tissue that are being studied for various clinical indications. In this study, we aimed to determine whether SVF transplantation into impaired tissues has differential effects on inflammatory and angiogenetic properties with regard to gender. As reactive oxygen species have been implicated in cardiovascular disease development, we investigated differences in gene and protein expression related to inflammation and angiogenesis in HUVECs co-cultured with adipose-derived SVFs from male (M group) and female (F group) individuals under oxidative stress conditions. The expression of several inflammatory (interleukin (IL)-33) and angiogenetic (platelet-derived growth factor (PDGF)) factors differed dramatically between male and female donors. Anti-inflammatory and pro-angiogenetic responses were observed in HUVECs co-cultured with SVFs under oxidative stress conditions, and these characteristics may exhibit partially differential effects according to gender. Using network analysis, we showed that co-culturing HUVECs with SVFs ameliorated pyroptosis/apoptosis via an increase in oxidative stress. Activation of caspase-1 and IL-1B was significantly altered in HUVECs co-cultured with SVFs from female donors. These findings regarding gender-dimorphic regulation of adipose-derived SVFs provide valuable information that can be used for evidence-based gender-specific clinical treatment of SVF transplantation for understanding of cardiovascular disease, allowing for the development of additional treatment.


Asunto(s)
Inflamación/genética , Neovascularización Patológica/genética , Obesidad/genética , Estrés Oxidativo/genética , Células del Estroma/citología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Apoptosis/genética , Diferenciación Celular , Linaje de la Célula/genética , Técnicas de Cocultivo , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/patología , Interleucina-33/genética , Masculino , Neovascularización Patológica/patología , Obesidad/patología , Factor de Crecimiento Derivado de Plaquetas , Especies Reactivas de Oxígeno/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/genética , Caracteres Sexuales , Células del Estroma/metabolismo
13.
Microb Cell Fact ; 15: 53, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26980206

RESUMEN

BACKGROUND: In the future, oil- and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3-hydroxypropionic acid (3HP), which can be produced by microbial fermentation. For an economically viable process 3HP must be produced at high titer, rate and yield and preferably at low pH to minimize downstream processing costs. RESULTS: Here we describe the metabolic engineering of baker's yeast Saccharomyces cerevisiae for biosynthesis of 3HP via a malonyl-CoA reductase (MCR)-dependent pathway. Integration of multiple copies of MCR from Chloroflexus aurantiacus and of phosphorylation-deficient acetyl-CoA carboxylase ACC1 genes into the genome of yeast increased 3HP titer fivefold in comparison with single integration. Furthermore we optimized the supply of acetyl-CoA by overexpressing native pyruvate decarboxylase PDC1, aldehyde dehydrogenase ALD6, and acetyl-CoA synthase from Salmonella enterica SEacs (L641P). Finally we engineered the cofactor specificity of the glyceraldehyde-3-phosphate dehydrogenase to increase the intracellular production of NADPH at the expense of NADH and thus improve 3HP production and reduce formation of glycerol as by-product. The final strain produced 9.8 ± 0.4 g L(-1) 3HP with a yield of 13% C-mol C-mol(-1) glucose after 100 h in carbon-limited fed-batch cultivation at pH 5. The 3HP-producing strain was characterized by (13)C metabolic flux analysis and by transcriptome analysis, which revealed some unexpected consequences of the undertaken metabolic engineering strategy, and based on this data, future metabolic engineering directions are proposed. CONCLUSIONS: In this study, S. cerevisiae was engineered for high-level production of 3HP by increasing the copy numbers of biosynthetic genes and improving flux towards precursors and redox cofactors. This strain represents a good platform for further optimization of 3HP production and hence an important step towards potential commercial bio-based production of 3HP.


Asunto(s)
Ácido Láctico/análogos & derivados , Ingeniería Metabólica/métodos , Oxidorreductasas/metabolismo , Saccharomyces cerevisiae , Chloroflexus/enzimología , Chloroflexus/genética , Regulación Fúngica de la Expresión Génica , Ácido Láctico/biosíntesis , Redes y Vías Metabólicas , Organismos Modificados Genéticamente , Oxidación-Reducción , Oxidorreductasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Salmonella enterica/enzimología , Salmonella enterica/genética
14.
J Cell Physiol ; 230(8): 1740-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25215878

RESUMEN

Flt3 ligand (FL), a potent hematopoietic cytokine, plays an important role in development and activation of dendritic cells (DCs) and natural killer cells (NK). Although some post-receptor signaling events of FL have been characterized, the role of FL on Flt3 expressing human peripheral blood monocyte is unclear. In the current study, we examined the role of FL on cell survival and growth of peripheral blood monocytes and function of monocyte-derived DCs. FL promoted monocyte proliferation in a dose-dependent manner and prevented spontaneous apoptosis. FL induced ERK phosphorylation and a specific ERK inhibitor completely abrogated FL-mediated cellular growth, while p38 MAPK, JNK, and AKT were relatively unaffected. Addition of FL to GM-CSF and IL-4 during DCs generation from monocytes increased the yield of DCs through induction of cell proliferation. DCs generated in the presence of FL expressed more costimulatory molecules on their surfaces and stimulated allogeneic T cell proliferation in MLR to a higher magnitude. Furthermore, FL partially antagonized IL-10-mediated inhibition on DCs function. Further characterization of FL actions may provide new and important information for immunotherapeutic approaches utilizing DCs.


Asunto(s)
Células Dendríticas/metabolismo , Proteínas de la Membrana/metabolismo , Monocitos/metabolismo , Apoptosis/inmunología , Western Blotting , Proliferación Celular , Células Dendríticas/citología , Células Dendríticas/inmunología , Citometría de Flujo , Humanos , Inmunofenotipificación , Técnicas In Vitro , Activación de Linfocitos/inmunología , Proteínas de la Membrana/inmunología , Monocitos/citología , Monocitos/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Biochem Biophys Res Commun ; 459(3): 387-92, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25727019

RESUMEN

Glutamate dehydrogenase (GDH) is an enzyme involved in the synthesis of amino acids by converting glutamate to α-ketoglutarate, and vice versa. To investigate the molecular mechanism of GDH, we determined a crystal structure of the Corynebacterium glutamicum-derived GDH (CgGDH) in complex with its NADP cofactor and α-ketoglutarate substrate. CgGDH functions as a hexamer, and each CgGDH monomer comprises 2 separate domains; a Rossmann fold cofactor-binding domain and a substrate-binding domain. The structural comparison between the apo- and cofactor/substrate-binding forms revealed that the CgGDH enzyme undergoes a domain movement during catalysis. In the apo-form, CgGDH exists as an open state, and upon binding of the substrate and cofactor the protein undergoes a conformation change to a closed state. Our structural study also revealed that CgGDH has cofactor specificity for NADP, but not NAD, and this was confirmed by GDH activity measurements. Residues involved in the stabilization of the NADP cofactor and the α-ketoglutarate substrate were identified, and their roles in substrate/cofactor binding were confirmed by site-directed mutagenesis experiments.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Corynebacterium glutamicum/enzimología , Glutamato Deshidrogenasa/química , Glutamato Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Dominio Catalítico , Corynebacterium glutamicum/genética , Cristalografía por Rayos X , Glutamato Deshidrogenasa/genética , Ácidos Cetoglutáricos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , NADP/metabolismo , Conformación Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
16.
Microb Cell Fact ; 14: 84, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-26063466

RESUMEN

BACKGROUND: Apocarotenoids, like the C13-norisoprenoids, are natural compounds that contribute to the flavor and/or aroma of flowers and foods. They are produced in aromatic plants-like raspberries and roses-by the enzymatic cleavage of carotenes. Due to their pleasant aroma and flavour, apocarotenoids have high commercial value for the cosmetic and food industry, but currently their production is mainly assured by chemical synthesis. In the present study, a Saccharomyces cerevisiae strain that synthesizes the apocarotenoid ß-ionone was constructed by combining integrative vectors and high copy number episomal vectors, in an engineered strain that accumulates FPP. RESULTS: Integration of an extra copy of the geranylgeranyl diphosphate synthase gene (BTS1), together with the carotenogenic genes crtYB and crtI from the ascomycete Xanthophyllomyces dendrorhous, resulted in carotenoid producing cells. The additional integration of the carotenoid cleavage dioxygenase gene from the plant Petunia hybrida (PhCCD1) let to the production of low amounts of ß-ionone (0.073 ± 0.01 mg/g DCW) and changed the color of the strain from orange to yellow. The expression of the crtYB gene from a high copy number plasmid in this former strain increased ß-ionone concentration fivefold (0.34 ± 0.06 mg/g DCW). Additionally, the episomal expression of crtYB together with the PhCCD1 gene in the same vector resulted in a final 8.5-fold increase of ß-ionone concentration (0.63 ± 0.02 mg/g DCW). Batch fermentations with this strain resulted in a final specific concentration of 1 mg/g DCW at 50 h, which represents a 15-fold increase. CONCLUSIONS: An efficient ß-ionone producing yeast platform was constructed by combining integrative and episomal constructs. By combined expression of the genes BTS1, the carotenogenic crtYB, crtI genes and the plant PhCCD1 gene-the highest ß-ionone concentration reported to date by a cell factory was achieved. This microbial cell factory represents a starting point for flavor production by a sustainable and efficient process that could replace current methods.


Asunto(s)
Ingeniería Metabólica , Norisoprenoides/biosíntesis , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Basidiomycota/genética , Carotenoides/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Petunia/genética , Proteínas de Plantas/metabolismo , Plásmidos/genética , Plásmidos/metabolismo
17.
J Ind Microbiol Biotechnol ; 42(11): 1481-91, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26364199

RESUMEN

A whole-cell biocatalytic system for the production of cadaverine from L-lysine has been developed. Among the investigated lysine decarboxylases from different microorganisms, Escherichia coli LdcC showed the best performance on cadaverine synthesis when E. coli XL1-Blue was used as the host strain. Six different strains of E. coli expressing E. coli LdcC were investigated and recombinant E. coli XL1-Blue, BL21(DE3) and W were chosen for further investigation since they showed higher conversion yield of lysine into cadaverine. The effects of substrate pH, substrate concentrations, buffering conditions, and biocatalyst concentrations have been investigated. Finally, recombinant E. coli XL1-Blue concentrated to an OD(600) of 50, converted 192.6 g/L (1317 mM) of crude lysine solution, obtained from an actual lysine manufacturing process, to 133.7 g/L (1308 mM) of cadaverine with a molar yield of 99.90 %. The whole-cell biocatalytic system described herein is expected to be applicable to the development of industrial bionylon production process.


Asunto(s)
Biocatálisis , Cadaverina/metabolismo , Escherichia coli/metabolismo , Lisina/metabolismo , Tampones (Química) , Carboxiliasas/genética , Carboxiliasas/metabolismo , Escherichia coli/citología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno
18.
Metab Eng ; 22: 104-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24502850

RESUMEN

3-Hydroxypropionic acid (3-HP) is an attractive platform chemical, which can be used to produce a variety of commodity chemicals, such as acrylic acid and acrylamide. For enabling a sustainable alternative to petrochemicals as the feedstock for these commercially important chemicals, fermentative production of 3-HP is widely investigated and is centered on bacterial systems in most cases. However, bacteria present certain drawbacks for large-scale organic acid production. In this study, we have evaluated the production of 3-HP in the budding yeast Saccharomyces cerevisiae through a route from malonyl-CoA, because this allows performing the fermentation at low pH thus making the overall process cheaper. We have further engineered the host strain by increasing availability of the precursor malonyl-CoA and by coupling the production with increased NADPH supply we were able to substantially improve 3-HP production by five-fold, up to a final titer of 463 mg l⁻¹. Our work thus led to a demonstration of 3-HP production in yeast via the malonyl-CoA pathway, and this opens for the use of yeast as a cell factory for production of bio-based 3-HP and derived acrylates in the future.


Asunto(s)
Ácido Láctico/análogos & derivados , Malonil Coenzima A/metabolismo , NADP/metabolismo , Saccharomyces cerevisiae/metabolismo , Concentración de Iones de Hidrógeno , Ácido Láctico/biosíntesis , Malonil Coenzima A/genética , NADP/genética , Saccharomyces cerevisiae/genética
19.
Proc Natl Acad Sci U S A ; 108(1): 296-301, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21173226

RESUMEN

Despite the safety and feasibility of mesenchymal stem cell (MSC) therapy, an optimal cell type has not yet emerged in terms of electromechanical integration in infarcted myocardium. We found that poor to moderate survival benefits of MSC-implanted rats were caused by incomplete electromechanical integration induced by tissue heterogeneity between myocytes and engrafted MSCs in the infarcted myocardium. Here, we report the development of cardiogenic cells from rat MSCs activated by phorbol myristate acetate, a PKC activator, that exhibited high expressions of cardiac-specific markers and Ca(2+) homeostasis-related proteins and showed adrenergic receptor signaling by norepinephrine. Histological analysis showed high connexin 43 coupling, few inflammatory cells, and low fibrotic markers in myocardium implanted with these phorbol myristate acetate-activated MSCs. Infarct hearts implanted with these cells exhibited restoration of conduction velocity through decreased tissue heterogeneity and improved myocardial contractility. These findings have major implications for the development of better cell types for electromechanical integration of cell-based treatment for infarcted myocardium.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Madre Mesenquimatosas/metabolismo , Contracción Miocárdica/fisiología , Infarto del Miocardio/terapia , Miocitos Cardíacos/fisiología , Análisis de Varianza , Animales , Western Blotting , Conexina 43/metabolismo , Citocinas/inmunología , Electrocardiografía , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Etiquetado Corte-Fin in Situ , Isoproterenol/farmacología , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/citología , Norepinefrina/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Acetato de Tetradecanoilforbol/metabolismo
20.
Int J Biol Macromol ; 255: 128103, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992937

RESUMEN

Corynebacterium glutamicum is an industrial workhorse applied in the production of valuable biochemicals. In the process of bio-based chemical production, improving cofactor recycling and mitigating cofactor imbalance are considered major solutions for enhancing the production yield and efficiency. Although, glyceraldehyde-3-phosphate dehydrogenase (GapDH), a glycolytic enzyme, can be a promising candidate for a sufficient NADPH cofactor supply, however, most microorganisms have only NAD-dependent GapDHs. In this study, we performed functional characterization and structure determination of novel NADPH-producing GapDH from C. glutamicum (CgGapX). Based on the crystal structure of CgGapX in complex with NADP cofactor, the unique structural features of CgGapX for NADP stabilization were elucidated. Also, N-terminal additional region (Auxiliary domain, AD) appears to have an effect on enzyme stabilization. In addition, through structure-guided enzyme engineering, we developed a CgGapX variant that exhibited 4.3-fold higher kcat, and 1.2-fold higher kcat/KM values when compared with wild-type. Furthermore, a bioinformatic analysis of 100 GapX-like enzymes from 97 microorganisms in the KEGG database revealed that the GapX-like enzymes possess a variety of AD, which seem to determine enzyme stability. Our findings are expected to provide valuable information for supplying NADPH cofactor pools in bio-based value-added chemical production.


Asunto(s)
Corynebacterium glutamicum , NADP/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Glucólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA