Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(18)2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39337631

RESUMEN

Gender and biological sex have distinct impacts on the pathogenesis of type 2 diabetes (T2D). Estrogen deficiency is known to predispose female mice to T2D. In our previous study, we found that a high-fat, high-sucrose diet (HFHSD) induces T2D in male mice through the miR-10b-5p/KLF11/KIT pathway, but not in females, highlighting hormonal disparities in T2D susceptibility. However, the underlying molecular mechanisms of this hormonal protection in females remain elusive. To address this knowledge gap, we utilized ovariectomized, estrogen-deficient female mice, fed them a HFHSD to induce T2D, and investigated the molecular mechanisms involved in estrogen-deficient diabetic female mice, relevant cell lines, and female T2D patients. Initially, female mice fed a HFHSD exhibited a delayed onset of T2D, but ovariectomy-induced estrogen deficiency promptly precipitated T2D without delay. Intriguingly, insulin (INS) was upregulated, while insulin receptor (INSR) and protein kinase B (AKT) were downregulated in these estrogen-deficient diabetic female mice, indicating insulin-resistant T2D. These dysregulations of INS, INSR, and AKT were mediated by a miR-10a/b-5p-NCOR2 axis. Treatment with miR-10a/b-5p effectively alleviated hyperglycemia in estrogen-deficient T2D female mice, while ß-estradiol temporarily reduced hyperglycemia. Consistent with the murine findings, plasma samples from female T2D patients exhibited significant reductions in miR-10a/b-5p, estrogen, and INSR, but increased insulin levels. Our findings suggest that estrogen protects against insulin-resistant T2D in females through miR-10a/b-5p/NCOR2 pathway, indicating the potential therapeutic benefits of miR-10a/b-5p restoration in female T2D management.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Resistencia a la Insulina/genética , Humanos , Insulina/metabolismo , Insulina/sangre , Estrógenos/metabolismo , Estrógenos/deficiencia , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Masculino , Ovariectomía
2.
J Synchrotron Radiat ; 30(Pt 4): 671-685, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37318367

RESUMEN

An experimental platform for dynamic diamond anvil cell (dDAC) research has been developed at the High Energy Density (HED) Instrument at the European X-ray Free Electron Laser (European XFEL). Advantage was taken of the high repetition rate of the European XFEL (up to 4.5 MHz) to collect pulse-resolved MHz X-ray diffraction data from samples as they are dynamically compressed at intermediate strain rates (≤103 s-1), where up to 352 diffraction images can be collected from a single pulse train. The set-up employs piezo-driven dDACs capable of compressing samples in ≥340 µs, compatible with the maximum length of the pulse train (550 µs). Results from rapid compression experiments on a wide range of sample systems with different X-ray scattering powers are presented. A maximum compression rate of 87 TPa s-1 was observed during the fast compression of Au, while a strain rate of ∼1100 s-1 was achieved during the rapid compression of N2 at 23 TPa s-1.


Asunto(s)
Diamante , Rayos Láser , Difracción de Rayos X , Presión , Rayos X
3.
Environ Sci Technol ; 56(15): 10808-10817, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35852377

RESUMEN

We coupled compound-specific isotopic analyses of nitrogen (N) in amino acids (δ15NGlu, δ15NPhe) and mercury stable isotopes (δ202Hg, Δ199Hg) to quantify ecological traits governing the concentration, variability, and source of Hg in largemouth bass (LB) and pike gudgeon (PG) across four rivers, South Korea. PG displayed uniform Hg concentration (56-137 ng/g), trophic position (TPcorrected; 2.6-3.0, n = 9), and N isotopes in the source amino acid (δ15NPhe; 7-13‰), consistent with their specialist feeding on benthic insects. LB showed wide ranges in Hg concentration (45-693 ng/g), TPcorrected (2.8-3.8, n = 14), and δ15NPhe (1.3-16‰), reflecting their opportunistic feeding behavior. Hg sources assessed using Hg isotopes reveal low and uniform Δ199Hg in PG (0.20-0.49‰), similar to Δ199Hg reported in sediments. LB displayed site-specific δ202Hg (-0.61 to -0.04‰) and Δ199Hg (0.53-1.09‰). At the Yeongsan River, LB displayed elevated Δ199Hg and low δ15NPhe, consistent with Hg and N sourced from the atmosphere. LB at the Geum River displayed low Δ199Hg and high δ15NPhe, both similar to the isotope values of anthropogenic sources. Our results suggest that a specialist fish (PG) with consistent ecological traits and Hg concentration is an effective bioindicator species for Hg. When accounting for Hg sources, however, LB better captures site-specific Hg sources.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Animales , Monitoreo Biológico , Monitoreo del Ambiente , Peces/metabolismo , Isótopos , Mercurio/análisis , Isótopos de Mercurio/análisis , Nitrógeno/análisis , Isótopos de Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis
4.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35563399

RESUMEN

Metalloendopeptidase ADAM-Like Decysin 1 (ADAMDEC1) is an anti-inflammatory peptidase that is almost exclusively expressed in the gastrointestinal (GI) tract. We have recently found abundant and selective expression of Adamdec1 in colonic mucosal PDGFRα+ cells. However, the cellular origin for this gene expression is controversial as it is also known to be expressed in intestinal macrophages. We found that Adamdec1 mRNAs were selectively expressed in colonic mucosal subepithelial PDGFRα+ cells. ADAMDEC1 protein was mainly released from PDGFRα+ cells and accumulated in the mucosal layer lamina propria space near the epithelial basement membrane. PDGFRα+ cells significantly overexpressed Adamdec1 mRNAs and protein in DSS-induced colitis mice. Adamdec1 was predominantly expressed in CD45- PDGFRα+ cells in DSS-induced colitis mice, with only minimal expression in CD45+ CD64+ macrophages. Additionally, overexpression of both ADAMDEC1 mRNA and protein was consistently observed in PDGFRα+ cells, but not in CD64+ macrophages found in human colonic mucosal tissue affected by Crohn's disease. In summary, PDGFRα+ cells selectively express ADAMDEC1, which is localized to the colon mucosa layer. ADAMDEC1 expression significantly increases in DSS-induced colitis affected mice and Crohn's disease affected human tissue, suggesting that this gene can serve as a diagnostic and/or therapeutic target for intestinal inflammation and Crohn's disease.


Asunto(s)
Proteínas ADAM , Colitis , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Animales , Biomarcadores , Colitis/inducido químicamente , Colitis/genética , Colitis/metabolismo , Colon/citología , Colon/metabolismo , Enfermedad de Crohn/metabolismo , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo
5.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502094

RESUMEN

The cellular microenvironment composition and changes therein play an extremely important role in cancer development. Changes in the extracellular matrix (ECM), which constitutes a majority of the tumor stroma, significantly contribute to the development of the tumor microenvironment. These alterations within the ECM and formation of the tumor microenvironment ultimately lead to tumor development, invasion, and metastasis. The ECM is composed of various molecules such as collagen, elastin, laminin, fibronectin, and the MMPs that cleave these protein fibers and play a central role in tissue remodeling. When healthy cells undergo an insult like DNA damage and become cancerous, if the ECM does not support these neoplastic cells, further development, invasion, and metastasis fail to occur. Therefore, ECM-related cancer research is indispensable, and ECM components can be useful biomarkers as well as therapeutic targets. Colorectal cancer specifically, is also affected by the ECM and many studies have been conducted to unravel the complex association between the two. Here we summarize the importance of several ECM components in colorectal cancer as well as their potential roles as biomarkers.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Animales , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Proteínas de la Matriz Extracelular/genética , Humanos
6.
J Environ Manage ; 300: 113693, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34547573

RESUMEN

A dual isotopes approach and the Bayesian isotope mixing model were applied to trace nitrogen pollution sources and to quantify their relative contribution to river water quality. We focused on two points to enhance the applicability of the method: 1) Direct measurement on the end-members to distinguish "sewage" and "manure" which used to be grouped in one pollution source as their isotope ranges overlap; 2) The Lagrangian sampling method was applied to consider the transport of nitrogen pollutants in a long river so that any fractionation process can be dealt with in the given Bayesian modeling framework. The results of the analysis confirmed the NO3- isotope composition in the river of interest to be within the range of NO3- with origins in "NH4+ in fertilizer", "Soil N", and "Manure and sewage" pollution. This suggests that nitrogen pollution is mostly attributed to anthropogenic sources. The δ18O NO3 value follows the range +2.5∼+15.0‰, implying that NO3- in the river is mainly derived from nitrification, and possible nitrification in groundwater or waterfront other than surface water. The ratio of the concentration of δ15N NO3 to that of δ18O NO3, and the corresponding regression equation indicates that the denitrification effect in surface water was insignificant during the study period. From the results of the contribution ratio of each source, improving the water quality of the discharge from the sewage treatment plants was proved to be the key factor to reduce nitrogen pollution in the river.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Teorema de Bayes , China , Monitoreo del Ambiente , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis
7.
J Am Chem Soc ; 142(31): 13406-13414, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32608979

RESUMEN

Integrated with heat-generating devices, a Li-ion battery (LIB) often operates at 20-40 °C higher than the ordinary working temperature. Although macroscopic investigation of the thermal contribution has shown a significant reduction in the LIB performance, the molecular level structural and chemical origin of battery aging in a mild thermal environment has not been elucidated. On the basis of the combined experiments of the electrochemical measurements, Cs-corrected electron microscopy, and in situ analyses, we herein provide operando structural and chemical insights on how a mild thermal environment affects the overall battery performance using anatase TiO2 as a model intercalation compound. Interestingly, a mild thermal condition induces excess lithium intercalation even at near-ambient temperature (45 °C), which does not occur at the ordinary working temperature. The anomalous intercalation enables excess lithium storage in the first few cycles but exerts severe intracrystal stress, consequently cracking the crystal that leads to battery aging. Importantly, this mild thermal effect is accumulated upon cycling, resulting in irreversible capacity loss even after the thermal condition is removed. Battery aging at a high working temperature is universal in nearly all intercalation compounds, and therefore, it is significant to understand how the thermal condition contributes to battery aging for designing intercalation compounds for advanced battery electrode materials.

8.
Ann Vasc Surg ; 67: 448.e1-448.e10, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32209414

RESUMEN

BACKGROUND: Brachio-basilic/brachial transposition arteriovenous fistula has emerged as one of the autologous arteriovenous fistula options. However, there have not been many reports on the outcomes of basilic or brachial elevation of arteriovenous fistula compared with those of conventional transposition. We evaluated the efficacy of modified brachio-basilic and brachio-brachial arteriovenous fistula creation with short-segment elevation preserving the axillary area. METHODS: From March 2016 to August 2018, medical records of the patients who underwent short-segment elevation of brachio-basilic or brachio-brachial arteriovenous fistula in the upper arm (sBAE or sBRE) were reviewed retrospectively. RESULTS: Of the 51 patients, 37 underwent sBAE and 14 underwent sBRE. Maturation failure occurred in two patients (3.92%), who underwent sBAE. Stenosis was the most common complication, which developed in 13 patients (25.5%), and there was no significant difference between the sBAE and the sBRE. In the 51 patients, cumulative primary patency rates at 6 and 12 months were 88.3% and 69.1%, respectively. Assisted primary patency rates at 6 and 12 months were 97.8% and 90.7%, respectively. Secondary patency rates at 6 and 12 months were both 100%. There were no significant differences between the sBAE and the sBRE in 1-year primary patency (79.1% vs. 46.7%; P = 0.20), assisted primary patency (91.6% vs. 88.1%; P = 0.36), and secondary patency rates (100% vs. 100%). CONCLUSIONS: Brachio-basilic/brachial arteriovenous fistula with short-segment elevation preserving the axilla showed excellent 1-year patency rate, easier cannulation, and other future advantages, and therefore, is a logical modification of conventional transposition of arteriovenous fistula.


Asunto(s)
Derivación Arteriovenosa Quirúrgica/métodos , Axila/irrigación sanguínea , Arteria Braquial/cirugía , Diálisis Renal , Extremidad Superior/irrigación sanguínea , Venas/cirugía , Anciano , Anciano de 80 o más Años , Derivación Arteriovenosa Quirúrgica/efectos adversos , Arteria Braquial/diagnóstico por imagen , Arteria Braquial/fisiopatología , Femenino , Oclusión de Injerto Vascular/etiología , Oclusión de Injerto Vascular/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Tiempo , Resultado del Tratamiento , Grado de Desobstrucción Vascular , Venas/diagnóstico por imagen , Venas/fisiopatología
9.
Environ Monit Assess ; 192(1): 41, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-31834560

RESUMEN

To evaluate the pretreatment processing for Cd isotope analysis of environmental samples, acid extractions and total digestions were examined with various environmental certified reference materials. Four certified reference material samples, including fly ash, polluted soil, domestic sludge, and industrial sludge, were digested by six different acid extraction and total digestion methods, and then Cd was separated to remove other matrix by anion-exchange column. The Cd recovery rates of the acid extraction methods were 2.6-89.1%, while those of the total digestion methods were 21.6-88.7%. In these results, the Cd recovery rates were dependent on the sample type. More than 80% of the Cd in the polluted soil and domestic sludge samples could be recovered regardless of the decomposition method, except one method. On the other hand, the Cd recovery rate from fly ash was low when total digestion was performed using a HF mixture, and the recovery rate by total digestion methods for industrial sludge was higher than that by acid extraction. In our results, Cd isotope ratios tended to be more positive by increasing the Cd recovery rates, suggesting that the light isotope of Cd was decomposed preferentially during the decomposition procedures. However, when more than 80% of the Cd in the samples was recovered, the Cd isotope ratios were determined to be similar. This indicated that at least 80% of the Cd should be recovered from environmental samples to accurately measure the Cd isotopic ratio of environmental samples.


Asunto(s)
Cadmio/análisis , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Ácidos , Ceniza del Carbón , Isótopos , Aguas del Alcantarillado
10.
J Am Chem Soc ; 140(48): 16676-16684, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30418777

RESUMEN

Various kinds of nanostructured materials have been extensively investigated as lithium ion battery electrode materials derived from their numerous advantageous features including enhanced energy and power density and cyclability. However, little is known about the microscopic origin of how nanostructures can enhance lithium storage performance. Herein, we identify the microscopic origin of enhanced lithium storage in anatase TiO2 nanostructure and report a reversible and stable route to achieve enhanced lithium storage capacity in anatase TiO2. We designed hollow anatase TiO2 nanostructures composed of interconnected ∼5 nm sized nanocrystals, which can individually reach the theoretical lithium storage limit and maintain a stable capacity during prolonged cycling (i.e., 330 mAh g-1 for the initial cycle and 228 mAh g-1 for the 100th cycle, at 0.1 A g-1). In situ characterization by X-ray diffraction and X-ray absorption spectroscopy shows that enhanced lithium storage into the anatase TiO2 nanocrystal results from the insertion reaction, which expands the crystal lattice during the sequential phase transition (anatase TiO2 → Li0.55TiO2 → LiTiO2). In addition to the pseudocapacitive charge storage of nanostructures, our approach extends the utilization of nanostructured TiO2 for significantly stabilizing excess lithium storage in crystal structures for long-term cycling, which can be readily applied to other lithium storage materials.

11.
Chemistry ; 24(13): 3263-3270, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29389044

RESUMEN

Nickel cobalt sulfide nanoparticles embedded in holey defect graphene hydrogel (HGH) that exhibit highly porous structures and uniform nickel cobalt sulfide nanoparticle sizes are successfully prepared by a facile solvothermal-hydrothermal method. As an electrode material for supercapacitors, the as-prepared NiCo2 S4 @HGH shows ultra-high specific capacitances of 1000 F g-1 and 800 F g-1 at 0.5 and 6 A g-1 , respectively, owing to the outstanding electrical conductivity of HGH and high specific capacitance of NiCo2 S4 . After 2100 charge/discharge cycles at a current density of 6 A g-1 , 96.6 % of the specific capacitance was retained, signifying the superb durability of NiCo2 S4 @HGH. Moreover, remarkable specific capacitance (312.6 F g-1 ) and capacity retention (87 % after 5000 cycles) at 6 A g-1 were displayed by the symmetric solid-state supercapacitor fabricated by using NiCo2 S4 @HGH electrodes. These auspicious supercapacitor performances demonstrate that the as-developed solvothermal-hydrothermal approach can be widely used to prepare graphene-coupled binary metal sulfides for high-performance supercapacitor applications.

12.
J Chem Phys ; 148(13): 134310, 2018 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-29626901

RESUMEN

Hydrazinium azide (HA) has been investigated at high pressures to 68 GPa using confocal micro-Raman spectroscopy and synchrotron powder x-ray diffraction. The results show that HA undergoes structural phase transitions from solid HA-I to HA-II at 13 GPa, associated with the strengthening of hydrogen bonding, and then to N8 at 40 GPa. The transformation of HA to recently predicted N8 (N≡N+-N--N=N--N-+N≡N) is evident by the emergence of new peaks at 2384 cm-1, 1665 cm-1, and 1165 cm-1, arising from the terminal N≡N stretching, the central N=N stretching, and the N-N stretching, respectively. However, upon decompression, N8 decomposes to ε-N2 below 25 GPa, but the remnant can be seen as low as 3 GPa.

13.
Mar Drugs ; 15(7)2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28714921

RESUMEN

Abstract: Stable isotope tracers were first applied to evaluate the Microcystis cell assimilation efficiency of Sinanodonta bivalves, since the past identification method has been limited to tracking the changes of each chl-a, clearity, and nutrient. The toxicity profile and accumulation of MC-LR, -RR and -YR in different organs (foot and digestive organs) from the three filter-feeders (Sinanodonta woodina, Sinanodonta arcaeformis, and Unio douglasiae) were assessed under the condition of toxigenic cyanobacteria (Microcystis aeruginosa) blooms through an in situ pond experiment using 13C and 15N dual isotope tracers. Chl-a concentration in the manipulated pond was dramatically decreased after the beginning of the second day, ranging from 217.5 to 15.6 µg·L-1. The highest amount of MCs was incorporated into muscle and gland tissues in U. douglasiae during the study period, at nearly 2 or 3 times higher than in S.woodiana and S. arcaeformis. In addition, the incorporated 13C and 15N atom % in the U. douglasiae bivalve showed lower values than in other bivalves. The results demonstrate that U. douglasiae has less capacity to assimilate toxic cyanobacteria derived from diet. However, the incorporated 13C and 15N atom % of S. arcaeformis showed a larger feeding capacity than U. douglasiae and S. wodiana. Our results therefore also indicate that S. arcaeformis can eliminate the toxin more rapidly than U. douglasiae, having a larger detoxification capacity.


Asunto(s)
Bivalvos/microbiología , Agua Dulce/microbiología , Isótopos/metabolismo , Microcistinas/metabolismo , Microcystis/metabolismo , Animales , Cianobacterias/metabolismo , Sistema Digestivo/microbiología , Estanques/microbiología
14.
Rapid Commun Mass Spectrom ; 30(13): 1567-75, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27321844

RESUMEN

RATIONALE: Stable isotope (δ(13) C, δ(15) N, δ(34) S values) analysis has become increasingly important for tracing contaminant sources in environments. Pretreatment of environmental samples allows accurate analysis of stable isotope ratios. The pretreatment of a sample and its subsequent preservation could either contaminate or create experimental artifacts affecting the validity of the resulting C/N ratios and the elemental isotopic contents of a sample. METHODS: The effects of acid pretreatment (0.1, 0.5, 1, 2, 5, 13 M HCl) and exposure period (2, 6, 12, 24, and 48 h) on the stable isotopic ratios of marine sediment (MS), river sediment (RS) and terrestrial soil (TS) samples were evaluated. The effects of storage temperatures (-80, -20 and 2°C), storage duration (1 week, 1 to 12 months) and washing steps (1, 2, 3, 5, 7 or 12 times) on the stable isotopic ratios were also considered. The %C, %N and %S, as well as the δ(13) C, δ(15) N, and δ(34) S values, of each sample were measured using continuous flow Elemental Analyzer/Isotope Ratio Mass Spectrometry (EA/IRMS). RESULTS: The HCl treatment was applicable for δ(13) C analysis. However, the acid concentration and duration of exposure that brought about total removal of carbonate for the three sample types varied; e.g. the TS sample required stronger acid and a shorter exposure time. Storage time also had an effect: the δ(13) C values were lower and the δ(15) N and δ(34) S values higher after storage for 300 days. CONCLUSIONS: HCl pretreatment effectively eliminates carbonates and thereby helps δ(13) C analysis of the organic fraction. HCl pretreatment is not recommended for δ(15) N and δ(34) S analysis. Freeze-drying of samples is recommended rather than oven drying. A temperature-dependent change in the isotopic ratios of long-term stored samples was observed during this study; therefore, relatively short-term storage (-80°C) of freeze-dried samples is preferable. Copyright © 2016 John Wiley & Sons, Ltd.

15.
J Chem Phys ; 145(8): 084701, 2016 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-27586935

RESUMEN

We present the pressure-induced phase/chemical changes of lithium peroxide (Li2O2) to 63 GPa using diamond anvil cells, confocal micro-Raman spectroscopy, and synchrotron x-ray diffraction. The Raman data show the emergence of the major vibrational peaks associated with O2 above 30 GPa, indicating the subsequent pressure-induced reversible chemical decomposition (disassociation) in dense Li2O2. The x-ray diffraction data of Li2O2, on the other hand, show no dramatic structural change but remain well within a P63/mmc structure to 63 GPa. Nevertheless, the Rietveld refinement indicates a subtle change in the structural order parameter z of the oxygen position O (13, 23, z) at around 35 GPa, which can be considered as a second-order, isostructural phase transition. The nearest oxygen-oxygen distance collapses from 1.56 Å at ambient condition to 1.48 Å at 63 GPa, resulting in a more ionic character of this layered crystal lattice, 3Li(+)+(LiO2)3 (3-). This structural change in turn advocates that Li2O2 decomposes to 2Li and O2, further augmented by the densification in specific molar volumes.

16.
Proc Natl Acad Sci U S A ; 110(29): 11720-4, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818624

RESUMEN

High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.


Asunto(s)
Disulfuro de Carbono/química , Conductividad Eléctrica , Conformación Molecular , Presión , Dispersión de Radiación , Temperatura
17.
Mar Drugs ; 13(11): 6740-58, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26561820

RESUMEN

After in situ incubation at the site for a year, phytoplanktons in surface water were exposed to natural light in temperate lakes (every month); thereafter, the net production rate of photoprotective compounds (mycosporine-like amino acids, MAAs) was calculated using (13)C labeled tracer. This is the first report describing seasonal variation in the net production rate of individual MAAs in temperate lakes using a compound-specific stable isotope method. In the mid-latitude region of the Korean Peninsula, UV radiation (UVR) usually peaks from July to August. In Lake Paldang and Lake Cheongpyeong, diatoms dominated among the phytoplankton throughout the year. The relative abundance of Cyanophyceae (Anabaena spiroides) reached over 80% during July in Lake Cheongpyeong. Changes in phytoplankton abundance indicate that the phytoplankton community structure is influenced by seasonal changes in the net production rate and concentration of MAAs. Notably, particulate organic matter (POM) showed a remarkable change based on the UV intensity occurring during that period; this was because of the fact that cyanobacteria that are highly sensitive to UV irradiance dominated the community. POM cultured in Lake Paldang had the greatest shinorine (SH) production rate during October, i.e., 83.83 ± 10.47 fgC·L(-1)·h(-1). The dominance of diatoms indicated that they had a long-term response to UVR. Evaluation of POM cultured in Lake Cheongpyeong revealed that there was an increase in the net MAA production in July (when UVR reached the maximum); a substantial amount of SH, i.e., 17.62 ± 18.34 fgC·L(-1)·h(-1), was recorded during this period. Our results demonstrate that both the net production rate as well as the concentration of MAAs related to photoinduction depended on the phytoplankton community structure. In addition, seasonal changes in UVR also influenced the quantity and production of MAAs in phytoplanktons (especially Cyanophyceae).


Asunto(s)
Aminoácidos/metabolismo , Cianobacterias/metabolismo , Diatomeas/metabolismo , Fitoplancton/metabolismo , Isótopos de Carbono , Cianobacterias/efectos de la radiación , Ciclohexilaminas/metabolismo , Diatomeas/efectos de la radiación , Glicina/análogos & derivados , Glicina/metabolismo , Lagos , Fitoplancton/efectos de la radiación , República de Corea , Estaciones del Año , Factores de Tiempo , Rayos Ultravioleta
18.
Phys Rev Lett ; 113(20): 205502, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25432047

RESUMEN

We present the discovery of a novel nitrogen phase synthesized using laser-heated diamond anvil cells at pressures between 120-180 GPa well above the stability field of cubic gauche (cg)-N. This new phase is characterized by its singly bonded, layered polymeric (LP) structure similar to the predicted Pba2 and two colossal Raman bands (at ∼1000 and 1300 cm^{-1} at 150 GPa), arising from two groups of highly polarized nitrogen atoms in the bulk and surface of the layer, respectively. The present result also provides a new constraint for the nitrogen phase diagram, highlighting an unusual symmetry-lowering 3D cg-N to 2D LP-N transition and thereby the enhanced electrostatic contribution to the stabilization of this densely packed LP-N (ρ=4.85 g/cm^{3} at 120 GPa).

19.
Environ Sci Process Impacts ; 26(3): 519-529, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38344926

RESUMEN

The environmental and climatic factors dictating atmospheric mercury (Hg) uptake by foliage and accumulation within the forest floor are evaluated across six mountain sites, South Korea, using Hg concentration and Hg stable isotope analyses. The isotope ratios of total gaseous Hg (TGM) at six mountains are explained by local anthropogenic Hg emission influence and partly by mountain elevation and wind speed. The extent to which TGM is taken up by foliage is not dependent on the site-specific TGM concentration, but by the local wind speed, which facilitates TGM passage through dense deciduous canopies in the Korean forests. This is depicted by the significant positive relationship between wind speed and foliage Hg concentration (r2 = 0.92, p < 0.05) and the magnitude of δ202Hg shift from TGM to foliage (r2 = 0.37, p > 0.05), associated with TGM uptake and oxidation by foliar tissues. The litter and topsoil Hg concentrations and isotope ratios reveal relationships with a wide range of factors, revealing lower Hg level and greater isotopic fractionation at sites with low elevation, high wind speed, and high mean warmest temperature. We attribute this phenomenon to active TGM re-emission from the forest floor at sites with high wind speed and high temperature, caused by turnover of labile organic matter and decomposition. In contrast to prior studies, we observe no significant effect of precipitation on forest Hg accumulation but precipitation appears to reduce foliage-level Hg uptake by scavenging atmospheric Hg species available for stomata uptake. The results of this study would enable better prediction of future atmospheric and forest Hg influence under climate change.


Asunto(s)
Mercurio , Mercurio/análisis , Monitoreo del Ambiente , Bosques , Isótopos/análisis , Gases/análisis
20.
Mar Pollut Bull ; 202: 116324, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579447

RESUMEN

This study investigated the nitrate dual isotopic compositions (δ15NNO3 and δ18ONO3) of water samples to trace nitrate sources in Lake Sihwa, which encompasses various land-use types (e.g., urban, industry, wetland, and agriculture). The biogeochemical interactions of anthropogenic nitrogen sources (e.g., soil, road dust, and septic water) were also evaluated through multiple pathways from terrestrial boundaries to the water column. Based on increased concentrations of dissolved total nitrogen (DTN; 3.1 ± 1.6 mg/L) after typhoon, the variation of element stoichiometry (N:P:Si) in this system shifted to the relatively N-rich conditions (DIN/DIP; 14.1 ± 8.1, DIN/DSi; 1.4 ± 1.8), potentially triggering the occurrence of harmful algal blooms. Furthermore, discriminative isotopic compositions (δ15NNO3; 4.0 ± 2.1 ‰, δ18ONO3; 6.1 ± 4.3 ‰) after the typhoon suggested the increased DTN input of anthropogenic origins within Lake Sihwa would be mainly transported from urban sources (76 ± 9 %). Consequently, the isotopic-based approach may be useful for effective water quality management under increased anthropogenic activities near aquatic systems.


Asunto(s)
Tormentas Ciclónicas , Monitoreo del Ambiente , Lagos , Nitrógeno , Contaminantes Químicos del Agua , Lagos/química , República de Corea , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Nitratos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA