Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Fish Biol ; 98(4): 956-970, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32112658

RESUMEN

When considering relationships between genotype and phenotype we frequently ignore the fact that the genome of a typical animal, notably including that of a fish and a human, harbours a huge amount of foreign DNA. Such DNA, in the form of transposable elements, can affect genome function in a major way, and transgene biology needs to be included in our understanding of the genome. Here we examine an unexpected phenotypic effect of the chromosomally integrated transgene fli1a-F-hsp70l:Gal4VP16 that serves as a model for transgene function generally. We examine larval fras1 mutant zebrafish (Danio rerio). Gal4VP16 is a potent transcriptional activator that is already well known for toxicity and mediating unusual transcriptional effects. In the presence of the transgene, phenotypes in the neural crest-derived craniofacial skeleton, notably fusions and shape changes associated with loss of function fras1 mutations, are made more severe, as we quantify by scoring phenotypic penetrance, the fraction of mutants expressing the trait. A very interesting feature is that the enhancements are highly specific for fras1 mutant phenotypes, occurring in the apparent absence of more widespread changes. Except for the features due to the fras1 mutation, the transgene-bearing larvae appear generally healthy and to be developing normally. The transgene behaves as a genetic partial dominant: a single copy is sufficient for the enhancements, yet, for some traits, two copies may exert a stronger effect. We made new strains bearing independent insertions of the fli1a-F-hsp70l:Gal4VP16 transgene in new locations in the genome, and observed increased severities of the same phenotypes as observed for the original insertion. This finding suggests that sequences within the transgene, for example Gal4VP16, are responsible for the enhancements, rather than the effect on neighbouring host sequences (such as an insertional mutation). The specificity and biological action underlying the traits are subjects of considerable interest for further investigation, as we discuss. Our findings show that work with transgenes needs to be undertaken with caution and attention to detail.


Asunto(s)
Variación Biológica Poblacional , Huesos/anatomía & histología , Pez Cebra/anatomía & histología , Pez Cebra/genética , Animales , Desarrollo Óseo/genética , Humanos , Mutación , Fenotipo , Transgenes
2.
Development ; 143(23): 4430-4440, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27789622

RESUMEN

Heightened phenotypic variation among mutant animals is a well-known, but poorly understood phenomenon. One hypothetical mechanism accounting for mutant phenotypic variation is progenitor cells variably choosing between two alternative fates during development. Zebrafish mef2cab1086 mutants develop tremendously variable ectopic bone in their hyoid craniofacial skeleton. Here, we report evidence that a key component of this phenotype is variable fate switching from ligament to bone. We discover that a 'track' of tissue prone to become bone cells is a previously undescribed ligament. Fate-switch variability is heritable, and comparing mutant strains selectively bred to high and low penetrance revealed differential mef2ca mutant transcript expression between high and low penetrance strains. Consistent with this, experimental manipulation of mef2ca mutant transcripts modifies the penetrance of the fate switch. Furthermore, we discovered a transposable element that resides immediately upstream of the mef2ca locus and is differentially DNA methylated in the two strains, correlating with differential mef2ca expression. We propose that variable transposon epigenetic silencing underlies the variable mef2ca mutant bone phenotype, and could be a widespread mechanism of phenotypic variability in animals.


Asunto(s)
Hueso Hioides/crecimiento & desarrollo , Ligamentos/crecimiento & desarrollo , Factores de Transcripción MEF2/genética , Osteogénesis/fisiología , Cráneo/crecimiento & desarrollo , Células Madre/citología , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Diferenciación Celular/fisiología , Metilación de ADN/genética , Elementos Transponibles de ADN/genética , Epigénesis Genética/genética , Regulación del Desarrollo de la Expresión Génica , Osteoblastos/citología , Penetrancia , Pez Cebra/crecimiento & desarrollo
3.
Development ; 142(10): 1733-44, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25968309

RESUMEN

The segmented vertebral column comprises a repeat series of vertebrae, each consisting of two key components: the vertebral body (or centrum) and the vertebral arches. Despite being a defining feature of the vertebrates, much remains to be understood about vertebral development and evolution. Particular controversy surrounds whether vertebral component structures are homologous across vertebrates, how somite and vertebral patterning are connected, and the developmental origin of vertebral bone-mineralizing cells. Here, we assemble evidence from ichthyologists, palaeontologists and developmental biologists to consider these issues. Vertebral arch elements were present in early stem vertebrates, whereas centra arose later. We argue that centra are homologous among jawed vertebrates, and review evidence in teleosts that the notochord plays an instructive role in segmental patterning, alongside the somites, and contributes to mineralization. By clarifying the evolutionary relationship between centra and arches, and their varying modes of skeletal mineralization, we can better appreciate the detailed mechanisms that regulate and diversify vertebral patterning.


Asunto(s)
Notocorda/anatomía & histología , Columna Vertebral/anatomía & histología , Vertebrados/anatomía & histología , Animales , Evolución Biológica , Tipificación del Cuerpo/fisiología , Huesos/anatomía & histología
4.
Dev Biol ; 416(1): 136-148, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27265864

RESUMEN

Both Fras1 and Itga8 connect mesenchymal cells to epithelia by way of an extracellular 'Fraser protein complex' that functions in signaling and adhesion; these proteins are vital to the development of several vertebrate organs. We previously found that zebrafish fras1 mutants have craniofacial defects, specifically, shortened symplectic cartilages and cartilage fusions that spare joint elements. During a forward mutagenesis screen, we identified a new zebrafish mutation, b1161, that we show here disrupts itga8, as confirmed using CRISPR-generated itga8 alleles. fras1 and itga8 single mutants and double mutants have similar craniofacial phenotypes, a result expected if loss of either gene disrupts function of the Fraser protein complex. Unlike fras1 mutants or other Fraser-related mutants, itga8 mutants do not show blistered tail fins. Thus, the function of the Fraser complex differs in the craniofacial skeleton and the tail fin. Focusing on the face, we find that itga8 mutants consistently show defective outpocketing of a late-forming portion of the first pharyngeal pouch, and variably express skeletal defects, matching previously characterized fras1 mutant phenotypes. In itga8 and fras1 mutants, skeletal severity varies markedly between sides, indicating that both mutants have increased developmental instability. Whereas fras1 is expressed in epithelia, we show that itga8 is expressed complementarily in facial mesenchyme. Paired with the observed phenotypic similarity, this expression indicates that the genes function in epithelial-mesenchymal interactions. Similar interactions between Fras1 and Itga8 have previously been found in mouse kidney, where these genes both regulate Nephronectin (Npnt) protein abundance. We find that zebrafish facial tissues express both npnt and the Fraser gene fibrillin2b (fbn2b), but their transcript levels do not depend on fras1 or itga8 function. Using a revertible fras1 allele, we find that the critical window for fras1 function in the craniofacial skeleton is between 1.5 and 3 days post fertilization, which coincides with the onset of fras1-dependent and itga8-dependent morphogenesis. We propose a model wherein Fras1 and Itga8 interact during late pharyngeal pouch morphogenesis to sculpt pharyngeal arches through epithelial-mesenchymal interactions, thereby stabilizing the developing craniofacial skeleton.


Asunto(s)
Región Branquial/embriología , Epitelio/embriología , Proteínas de la Matriz Extracelular/fisiología , Integrinas/fisiología , Mesodermo/embriología , Proteínas de Pez Cebra/fisiología , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Inducción Embrionaria , Epitelio/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Huesos Faciales/embriología , Fibrilina-2/metabolismo , Integrinas/genética , Mesodermo/metabolismo , Morfogénesis , Mutación , ARN Mensajero , Pez Cebra , Proteínas de Pez Cebra/genética
5.
Development ; 140(13): 2765-75, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23698351

RESUMEN

The evolution of joints, which afford skeletal mobility, was instrumental in vertebrate success. Here, we explore the molecular genetics and cell biology that govern jaw joint development. Genetic manipulation experiments in zebrafish demonstrate that functional loss, or gain, of the homeobox-containing gene barx1 produces gain, or loss, of joints, respectively. Ectopic joints in barx1 mutant animals are present in every pharyngeal segment, and are associated with disrupted attachment of bone, muscles and teeth. We find that ectopic joints develop at the expense of cartilage. Time-lapse experiments suggest that barx1 controls the skeletal precursor cell choice between differentiating into cartilage versus joint cells. We discovered that barx1 functions in this choice, in part, by regulating the transcription factor hand2. We further show that hand2 feeds back to negatively regulate barx1 expression. We consider the possibility that changes in barx1 function in early vertebrates were among the key innovations fostering the evolution of skeletal joints.


Asunto(s)
Cartílago/embriología , Huesos Faciales/metabolismo , Articulaciones/embriología , Cráneo/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Cartílago/metabolismo , Huesos Faciales/embriología , Articulaciones/metabolismo , Cráneo/embriología , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética
6.
Dev Biol ; 385(2): 189-99, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24269905

RESUMEN

Phenotypic robustness requires a process of developmental buffering that is largely not understood, but which can be disrupted by mutations. Here we show that in mef2ca(b1086) loss of function mutant embryos and early larvae, development of craniofacial hyoid bones, the opercle (Op) and branchiostegal ray (BR), becomes remarkably unstable; the large magnitude of the instability serves as a positive attribute to learn about features of this developmental buffering. The OpBR mutant phenotype variably includes bone expansion and fusion, Op duplication, and BR homeosis. Formation of a novel bone strut, or a bone bridge connecting the Op and BR together occurs frequently. We find no evidence that the phenotypic stability in the wild type is provided by redundancy between mef2ca and its co-ortholog mef2cb, or that it is related to the selector (homeotic) gene function of mef2ca. Changes in dorsal-ventral patterning of the hyoid arch also might not contribute to phenotypic instability in mutants. However, subsequent development of the bone lineage itself, including osteoblast differentiation and morphogenetic outgrowth, shows marked variation. Hence, steps along the developmental trajectory appear differentially sensitive to the loss of buffering, providing focus for the future study.


Asunto(s)
Desarrollo Óseo/genética , Larva/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Genes Homeobox , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
7.
Evol Dev ; 17(5): 302-14, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26372063

RESUMEN

What is the nature of evolutionary divergence of the jaw skeleton within the genus Oncorhynchus? How can two associated bones evolve new shapes and still maintain functional integration? Here, we introduce and test a "concordance" hypothesis, in which an extraordinary matching of the evolutionary shape changes of the dentary and angular articular serves to preserve their fitting together. To test this hypothesis, we examined morphologies of the dentary and angular articular at parr (juvenile) stage, and at three levels of biological organization­between salmon and trout, between sister species within both salmon and trout, and among three types differing in life histories within one species, Oncorhynchus mykiss. The comparisons show bone shape divergences among the groups at each level; morphological divergence between salmon and trout is marked even at this relatively early life history stage. We observed substantial matching between the two mandibular bones in both pattern and amount of shape variation, and in shape covariation across species. These findings strongly support the concordance hypothesis, and reflect functional and/or developmental constraint on morphological evolution. We present evidence for developmental modularity within both bones. The locations of module boundaries were predicted from the patterns of evolutionary divergences, and for the dentary, at least, would appear to facilitate its functional association with the angular articular. The modularity results suggest that development has biased the course of evolution.


Asunto(s)
Evolución Molecular , Variación Genética , Mandíbula/anatomía & histología , Salmonidae/genética , Animales , Fenotipo , Salmonidae/anatomía & histología
8.
Development ; 139(13): 2371-80, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22627283

RESUMEN

In the developing skeleton, dermal bone morphogenesis includes the balanced proliferation, recruitment and differentiation of osteoblast precursors, yet how bones acquire unique morphologies is unknown. We show that Hedgehog (Hh) signaling mediates bone shaping during early morphogenesis of the opercle (Op), a well characterized dermal bone of the zebrafish craniofacial skeleton. ihha is specifically expressed in a local population of active osteoblasts along the principal growing edge of the bone. Mutational studies show that Hh signaling by this osteoblast population is both necessary and sufficient for full recruitment of pre-osteoblasts into the signaling population. Loss of ihha function results in locally reduced proliferation of pre-osteoblasts and consequent reductions in recruitment into the osteoblast pool, reduced bone edge length and reduced outgrowth. Conversely, hyperactive Hh signaling in ptch1 mutants causes opposite defects in proliferation and growth. Time-lapse microscopy of early Op morphogenesis using transgenically labeled osteoblasts demonstrates that ihha-dependent bone development is not only region specific, but also begins exactly at the onset of a second phase of morphogenesis, when the early bone begins to reshape into a more complex form. These features strongly support a hypothesis that dermal bone development is modular, with different gene sets functioning at specific times and locations to pattern growth. The Hh-dependent module is not limited to this second phase of bone growth: during later larval development, the Op is fused along the dysmorphic edge to adjacent dermal bones. Hence, patterning within a module may include adjacent regions of functionally related bones and might require that signaling pathways function over an extended period of development.


Asunto(s)
Desarrollo Óseo/fisiología , Proliferación Celular , Proteínas Hedgehog/fisiología , Morfogénesis/fisiología , Animales , Regulación hacia Abajo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/genética , Proteínas de la Membrana , Mutación , Osteoblastos/fisiología , Receptores Patched , Receptor Patched-1 , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología , Transducción de Señal/fisiología , Regulación hacia Arriba/fisiología , Pez Cebra/crecimiento & desarrollo , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
9.
Development ; 139(15): 2804-13, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22782724

RESUMEN

Lesions in the epithelially expressed human gene FRAS1 cause Fraser syndrome, a complex disease with variable symptoms, including facial deformities and conductive hearing loss. The developmental basis of facial defects in Fraser syndrome has not been elucidated. Here we show that zebrafish fras1 mutants exhibit defects in facial epithelia and facial skeleton. Specifically, fras1 mutants fail to generate a late-forming portion of pharyngeal pouch 1 (termed late-p1) and skeletal elements adjacent to late-p1 are disrupted. Transplantation studies indicate that fras1 acts in endoderm to ensure normal morphology of both skeleton and endoderm, consistent with well-established epithelial expression of fras1. Late-p1 formation is concurrent with facial skeletal morphogenesis, and some skeletal defects in fras1 mutants arise during late-p1 morphogenesis, indicating a temporal connection between late-p1 and skeletal morphogenesis. Furthermore, fras1 mutants often show prominent second arch skeletal fusions through space occupied by late-p1 in wild type. Whereas every fras1 mutant shows defects in late-p1 formation, skeletal defects are less penetrant and often vary in severity, even between the left and right sides of the same individual. We interpret the fluctuating asymmetry in fras1 mutant skeleton and the changes in fras1 mutant skeletal defects through time as indicators that skeletal formation is destabilized. We propose a model wherein fras1 prompts late-p1 formation and thereby stabilizes skeletal formation during zebrafish facial development. Similar mechanisms of stochastic developmental instability might also account for the high phenotypic variation observed in human FRAS1 patients.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Pez Cebra/fisiología , Animales , Huesos/metabolismo , Cartílago/citología , Cartílago/metabolismo , Cruzamientos Genéticos , Endodermo/metabolismo , Síndrome de Fraser/genética , Humanos , Hibridación in Situ , Modelos Biológicos , Modelos Genéticos , Mutación , Esqueleto , Pez Cebra , Proteínas de Pez Cebra/genética
10.
PLoS Genet ; 7(8): e1002246, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21901110

RESUMEN

Differentiating cells interact with their extracellular environment over time. Chondrocytes embed themselves in a proteoglycan (PG)-rich matrix, then undergo a developmental transition, termed "maturation," when they express ihh to induce bone in the overlying tissue, the perichondrium. Here, we ask whether PGs regulate interactions between chondrocytes and perichondrium, using zebrafish mutants to reveal that cartilage PGs inhibit chondrocyte maturation, which ultimately dictates the timing of perichondral bone development. In a mutagenesis screen, we isolated a class of mutants with decreased cartilage matrix and increased perichondral bone. Positional cloning identified lesions in two genes, fam20b and xylosyltransferase1 (xylt1), both of which encode PG synthesis enzymes. Mutants failed to produce wild-type levels of chondroitin sulfate PGs, which are normally abundant in cartilage matrix, and initiated perichondral bone formation earlier than their wild-type siblings. Primary chondrocyte defects might induce the bone phenotype secondarily, because mutant chondrocytes precociously initiated maturation, showing increased and early expression of such markers as runx2b, collagen type 10a1, and ihh co-orthologs, and ihha mutation suppressed early perichondral bone in PG mutants. Ultrastructural analyses demonstrated aberrant matrix organization and also early cellular features of chondrocyte hypertrophy in mutants. Refining previous in vitro reports, which demonstrated that fam20b and xylt1 were involved in PG synthesis, our in vivo analyses reveal that these genes function in cartilage matrix production and ultimately regulate the timing of skeletal development.


Asunto(s)
Condrocitos/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/biosíntesis , Osteogénesis/genética , Pentosiltransferasa/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas de Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/genética , Animales , Cartílago/crecimiento & desarrollo , Cartílago/ultraestructura , Células Cultivadas , Condrocitos/ultraestructura , Proteoglicanos Tipo Condroitín Sulfato/genética , Colágeno/genética , Proteínas Hedgehog/metabolismo , Mutación , Pez Cebra/metabolismo , UDP Xilosa Proteína Xilosiltransferasa
11.
BMC Dev Biol ; 13: 23, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23714426

RESUMEN

BACKGROUND: The vertebrate craniofacial skeleton may exhibit anatomical complexity and diversity, but its genesis and evolution can be understood through careful dissection of developmental programs at cellular resolution. Resources are lacking that include introductory overviews of skeletal anatomy coupled with descriptions of craniofacial development at cellular resolution. In addition to providing analytical guidelines for other studies, such an atlas would suggest cellular mechanisms underlying development. DESCRIPTION: We present the Fish Face Atlas, an online, 3D-interactive atlas of craniofacial development in the zebrafish Danio rerio. Alizarin red-stained skulls scanned by fluorescent optical projection tomography and segmented into individual elements provide a resource for understanding the 3D structure of the zebrafish craniofacial skeleton. These data provide the user an anatomical entry point to confocal images of Alizarin red-stained zebrafish with transgenically-labelled pharyngeal arch ectomesenchyme, chondrocytes, and osteoblasts, which illustrate the appearance, morphogenesis, and growth of the mandibular and hyoid cartilages and bones, as viewed in live, anesthetized zebrafish during embryonic and larval development. Confocal image stacks at high magnification during the same stages provide cellular detail and suggest developmental and evolutionary hypotheses. CONCLUSION: The FishFace Atlas is a novel learning tool for understanding craniofacial skeletal development, and can serve as a reference for a variety of studies, including comparative and mutational analyses.


Asunto(s)
Cara/anatomía & histología , Cráneo/anatomía & histología , Pez Cebra/anatomía & histología , Animales
12.
Development ; 137(15): 2507-17, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20573696

RESUMEN

The ventrally expressed secreted polypeptide endothelin1 (Edn1) patterns the skeleton derived from the first two pharyngeal arches into dorsal, intermediate and ventral domains. Edn1 activates expression of many genes, including hand2 and Dlx genes. We wanted to know how hand2/Dlx genes might generate distinct domain identities. Here, we show that differential expression of hand2 and Dlx genes delineates domain boundaries before and during cartilage morphogenesis. Knockdown of the broadly expressed genes dlx1a and dlx2a results in both dorsal and intermediate defects, whereas knockdown of three intermediate-domain restricted genes dlx3b, dlx4b and dlx5a results in intermediate-domain-specific defects. The ventrally expressed gene hand2 patterns ventral identity, in part by repressing dlx3b/4b/5a. The jaw joint is an intermediate-domain structure that expresses nkx3.2 and a more general joint marker, trps1. The jaw joint expression of trps1 and nkx3.2 requires dlx3b/4b/5a function, and expands in hand2 mutants. Both hand2 and dlx3b/4b/5a repress dorsal patterning markers. Collectively, our work indicates that the expression and function of hand2 and Dlx genes specify major patterning domains along the dorsoventral axis of zebrafish pharyngeal arches.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Tipificación del Cuerpo , Huesos/metabolismo , Región Branquial/embriología , Región Branquial/fisiología , Mutación , Estructura Terciaria de Proteína , Pez Cebra
13.
PLoS Genet ; 6(4): e1000907, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20419147

RESUMEN

Using forward genetics, we have identified the genes mutated in two classes of zebrafish fin mutants. The mutants of the first class are characterized by defects in embryonic fin morphogenesis, which are due to mutations in a Laminin subunit or an Integrin alpha receptor, respectively. The mutants of the second class display characteristic blistering underneath the basement membrane of the fin epidermis. Three of them are due to mutations in zebrafish orthologues of FRAS1, FREM1, or FREM2, large basement membrane protein encoding genes that are mutated in mouse bleb mutants and in human patients suffering from Fraser Syndrome, a rare congenital condition characterized by syndactyly and cryptophthalmos. Fin blistering in a fourth group of zebrafish mutants is caused by mutations in Hemicentin1 (Hmcn1), another large extracellular matrix protein the function of which in vertebrates was hitherto unknown. Our mutant and dose-dependent interaction data suggest a potential involvement of Hmcn1 in Fraser complex-dependent basement membrane anchorage. Furthermore, we present biochemical and genetic data suggesting a role for the proprotein convertase FurinA in zebrafish fin development and cell surface shedding of Fras1 and Frem2, thereby allowing proper localization of the proteins within the basement membrane of forming fins. Finally, we identify the extracellular matrix protein Fibrillin2 as an indispensable interaction partner of Hmcn1. Thus we have defined a series of zebrafish mutants modelling Fraser Syndrome and have identified several implicated novel genes that might help to further elucidate the mechanisms of basement membrane anchorage and of the disease's aetiology. In addition, the novel genes might prove helpful to unravel the molecular nature of thus far unresolved cases of the human disease.


Asunto(s)
Embrión no Mamífero/metabolismo , Proteínas de la Matriz Extracelular/genética , Síndrome de Frasier/genética , Furina/genética , Mutación , Proproteína Convertasas/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de la Matriz Extracelular/metabolismo , Furina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Datos de Secuencia Molecular , Proproteína Convertasas/metabolismo , Proteínas de Pez Cebra/metabolismo
14.
BMC Dev Biol ; 12: 16, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-22676467

RESUMEN

BACKGROUND: Histone deacetylase-4 (Hdac4) is a class II histone deacetylase that inhibits the activity of transcription factors. In humans, HDAC4 deficiency is associated with non-syndromic oral clefts and brachydactyly mental retardation syndrome (BDMR) with craniofacial abnormalities. RESULTS: We identify hdac4 in zebrafish and characterize its function in craniofacial morphogenesis. The gene is present as a single copy, and the deduced Hdac4 protein sequence shares all known functional domains with human HDAC4. The zebrafish hdac4 transcript is widely present in migratory cranial neural crest (CNC) cells of the embryo, including populations migrating around the eye, which previously have been shown to contribute to the formation of the palatal skeleton of the early larva. Embryos injected with hdac4 morpholinos (MO) have reduced or absent CNC populations that normally migrate medial to the eye. CNC-derived palatal precursor cells do not recover at the post-migratory stage, and subsequently we found that defects in the developing cartilaginous palatal skeleton correlate with reduction or absence of early CNC cells. Palatal skeletal defects prominently include a shortened, clefted, or missing ethmoid plate, and are associated with a shortening of the face of young larvae. CONCLUSIONS: Our results demonstrate that Hdac4 is a regulator of CNC-derived palatal skeletal precursors during early embryogenesis. Cleft palate resulting from HDAC4 mutations in human patients may result from defects in a homologous CNC progenitor cell population.


Asunto(s)
Histona Desacetilasas/metabolismo , Cresta Neural/citología , Hueso Paladar/anomalías , Hueso Paladar/embriología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Cartílago/anomalías , Cartílago/embriología , Cabeza/embriología , Histona Desacetilasas/genética , Morfolinos/metabolismo , Cresta Neural/metabolismo , Proteínas Represoras/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
15.
Evol Dev ; 14(4): 326-37, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22765204

RESUMEN

Oceanic threespine sticklebacks have repeatedly and independently evolved new morphologies upon invasions of freshwater habitats. A consistent derived feature of the freshwater form across populations and geography is a shape change of the opercle, a large early developing facial bone. We show that the principal multivariate axis describing opercle shape development from the young larva to the full adult stage of oceanic fish matches the principal axis of evolutionary change associated with relocation from the oceanic to freshwater habitat. The opercle phenotype of freshwater adults closely resembles the phenotype of the bone in juveniles. Thus, evolution to the freshwater condition is in large part by truncation of development; the freshwater fish do not achieve the full ancestral adult bone shape. Additionally, the derived state includes dissociated ontogenetic changes. Dissociability may reflect an underlying modular pattern of opercle development, and facilitate flexibility of morphological evolution.


Asunto(s)
Evolución Biológica , Ecosistema , Fenotipo , Smegmamorpha/fisiología , Animales , Agua Dulce , Agua de Mar
16.
Genesis ; 48(8): 505-11, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20506187

RESUMEN

We report the expression pattern and construction of a transgenic zebrafish line for a transcription factor involved in otic vesicle formation and skeletogenesis. The zinc finger transcription factor sp7 (formerly called osterix) is reported as a marker of osteoblasts. Using bacterial artificial chromosome (BAC)-mediated transgenesis, we generated a zebrafish transgenic line for studying skeletal development, Tg(sp7:EGFP)b1212. Using a zebrafish BAC, EGFP was introduced downstream of the regulatory regions of sp7 and injected into one cell-stage embryos. In this transgenic line, GFP expression reproduces endogenous sp7 gene expression in the otic placode and vesicle, and in forming skeletal structures. GFP-positive cells were also detected in adult fish, and were found associated with regenerating fin rays post-amputation. This line provides an essential tool for the further study of zebrafish otic vesicle formation and the development and regeneration of the skeleton.


Asunto(s)
Regeneración Ósea/genética , Organogénesis/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Aletas de Animales/fisiología , Aletas de Animales/cirugía , Animales , Animales Modificados Genéticamente , Condrocitos/metabolismo , Cromosomas Artificiales Bacterianos/genética , Clonación Molecular , Oído/embriología , Oído/crecimiento & desarrollo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Larva/genética , Larva/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción Sp7 , Factores de Transcripción/genética , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo
17.
J Anat ; 215(2): 91-109, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19549004

RESUMEN

We examined the shapes and sizes of dermal bones of the palate of selected Palaeozoic tetrapods in order to identify the ancestral states of palatal bone morphologies in the earliest tetrapods, to learn how the composition of the palate varies within and among early tetrapod radiations, and to recognize evolutionary correlations among the size and shapes of skeletal elements in this important group of animals. We find that whereas the palatal bones themselves and their arrangements are usually conserved, considerable correlated evolutionary change occurs in the shapes and sizes of the bones. Some of the changes in the bones are allometrically linked to overall palate size, which varies more than 100-fold among the taxa in our sample. Often, these allometries were only hinted at in traditional independent contrasts-based regressions of log transformed data, particularly because many allometries are subtle, their slopes may vary among subclades, and the scatter around some trendlines is high. Rather, the allometries showed up in analyses of size-standardized palatal bone dimensions investigated using independent contrasts, bivariate phylomorphospace plots, and mirrored character reconstructions on the phylogenetic tree. We find negative allometry for parasphenoid lengths and widths essentially across the entire tree of Palaeozoic tetrapods, but with different trajectories characterizing the two largest clades, the temnospondyls and the lepospondyls. The lengths of several other elements may show positive allometries, either across the entire tree or in just a subclade. One possible positive allometry exists for the ectopterygoid, which appears to shorten allometrically in temnospondyls that evolve small body and palate size, and, as in Doleserpeton can be lost altogether. Both shortening and loss could be by the same developmental change, paedomorphosis, a form of heterochrony. Paedomorphosis might also account for evolution of relatively large parasphenoids in both lepospondyls and diminutive temnospondyls, but does not seem to explain evolution of ectopterygoid loss in lepospondyls. A regularity observed across nearly all taxa in our study set is an inverse correlation between the lengths of the vomer and pterygoid, bones that lie adjacent to one another along the long palatal axis. Further work is needed to learn whether such correlated evolution might be due to adaptation and/or to developmental bias, and particularly to learn how correlations and allometries themselves evolve.


Asunto(s)
Evolución Biológica , Hueso Paladar/anatomía & histología , Vertebrados/anatomía & histología , Animales , Biometría/métodos , Paleontología , Filogenia , Músculos Pterigoideos/anatomía & histología , Sitios de Carácter Cuantitativo
18.
Evol Lett ; 3(4): 374-391, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31388447

RESUMEN

The role of osteoblast placement in skeletal morphological variation is relatively well understood, but alternative developmental mechanisms affecting bone shape remain largely unknown. Specifically, very little attention has been paid to variation in later mineralization stages of intramembranous ossification as a driver of morphological diversity. We discover the occurrence of specific, sometimes large, regions of nonmineralized osteoid within bones that also contain mineralized tissue. We show through a variety of histological, molecular, and tomographic tests that this "extended" osteoid material is most likely nonmineralized bone matrix. This tissue type is a significant determinant of gill cover bone shape in the teleostean suborder Cottoidei. We demonstrate repeated evolution of extended osteoid in Cottoidei through ancestral state reconstruction and test for an association between extended osteoid variation and habitat differences among species. Through measurement of extended osteoid at various stages of gill cover development in species across the phylogeny, we gain insight into possible evolutionary developmental origins of the trait. We conclude that this fine-tuned developmental regulation of bone matrix mineralization reflects heterochrony at multiple biological levels and is a novel mechanism for the evolution of diversity in skeletal morphology. This research lays the groundwork for a new model in which to study bone mineralization and evolutionary developmental processes, particularly as they may relate to adaptation during a prominent evolutionary radiation of fishes.

19.
Mech Dev ; 124(1): 35-42, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17081734

RESUMEN

The organizer, the signaling center that specifies vertebrate axial polarity and the nervous system, is a dorsal midline mesodermal domain in the gastrula that will form prechordal plate and anterior notochord. We show that in zebrafish the organizer is not a single domain when it first arises in the nascent mesoderm at the onset of gastrulation. Rather, in the presumptive prechordal plate region, the organizer is subdivided into two side-by-side cellular fields. Within minutes, concurrent medial and anterior cellular movements merge, or 'coalesce', the two fields to form the well-known singular midline field. Coalescence forms a symmetrical domain because the cell movements on the left and right sides initiate simultaneously and occur synchronously. However, in embryos with reduced function of the T-box transcription factor Tbx16 (Spadetail) or its genetic target paraxial protocadherin (Papc), synchrony is lost, coalesence is disrupted, and the midline domain is misshaped. Furthermore, with combined loss of Tbx16 and Wnt11 (Silberblick), coalesence is essentially absent. Possibly as a consequence, both the anterior movement of presumptive prechordal plate and organizer function, as assayed by eye-field separation, are disrupted. Our findings thus reveal that Tbx16, in combination with Wnt11, are critical components not only in morphogenesis but also in initial assembly of the organizer.


Asunto(s)
Organizadores Embrionarios/embriología , Proteínas de Dominio T Box/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Secuencia de Bases , Tipificación del Cuerpo , Cadherinas/genética , Cadherinas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Oligodesoxirribonucleótidos Antisentido/genética , Oligodesoxirribonucleótidos Antisentido/farmacología , Organizadores Embrionarios/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Proteínas Wnt/deficiencia , Proteínas Wnt/genética , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
20.
PLoS Biol ; 2(9): E244, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15269787

RESUMEN

Pharyngeal endoderm is essential for and can reprogram development of the head skeleton. Here we investigate the roles of specific endodermal structures in regulating craniofacial development. We have isolated an integrinalpha5 mutant in zebrafish that has region-specific losses of facial cartilages derived from hyoid neural crest cells. In addition, the cranial muscles that normally attach to the affected cartilage region and their associated nerve are secondarily reduced in integrinalpha5- animals. Earlier in development, integrinalpha5 mutants also have specific defects in the formation of the first pouch, an outpocketing of the pharyngeal endoderm. By fate mapping, we show that the cartilage regions that are lost in integrinalpha5 mutants develop from neural crest cells directly adjacent to the first pouch in wild-type animals. Furthermore, we demonstrate that Integrinalpha5 functions in the endoderm to control pouch formation and cartilage development. Time-lapse recordings suggest that the first pouch promotes region-specific cartilage development by regulating the local compaction and survival of skeletogenic neural crest cells. Thus, our results reveal a hierarchy of tissue interactions, at the top of which is the first endodermal pouch, which locally coordinates the development of multiple tissues in a specific region of the vertebrate face. Lastly, we discuss the implications of a mosaic assembly of the facial skeleton for the evolution of ray-finned fish.


Asunto(s)
Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hueso Hioides/crecimiento & desarrollo , Integrina alfa5/genética , Integrinas/metabolismo , Mutación , Animales , Tipificación del Cuerpo , Cartílago/embriología , Cartílago/metabolismo , Cartílago/patología , Linaje de la Célula , Electroporación , Evolución Molecular , Proteínas Fluorescentes Verdes/metabolismo , Hueso Hioides/embriología , Microscopía Confocal , Modelos Biológicos , Datos de Secuencia Molecular , Cresta Neural/metabolismo , Neuronas/metabolismo , Fenotipo , Factores de Tiempo , Pez Cebra , Proteínas de Pez Cebra/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA