Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 91(1): 413-423, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37676121

RESUMEN

PURPOSE: In this study, we compared two triarylmethyl (TAM) spin probes, Ox071 and Ox063 for their efficacy in measuring tissue oxygen levels under hypoxic and normoxic conditions by R2 *-based EPR oximetry. METHODS: The R2 * dependencies on the spin probe concentration and oxygen level were calibrated using deoxygenated 1, 2, 5, and 10 mM standard solutions and 2 mM solutions saturated at 0%, 2%, 5%, 10%, and 21% of oxygen. For the hypoxic model, in vivo imaging of a MIA PaCa-2 tumor implanted in the hind leg of a mouse was performed on successive days by R2 *-based EPR oximetry using either Ox071 or Ox063. For the normoxic model, renal imaging of healthy athymic mice was performed using both spin probes. The 3D images were reconstructed by single point imaging and multi-gradient technique was used to determine R2 * maps. RESULTS: The signal intensities of Ox071 were approximately three times greater than that of Ox063 in the entire partial pressure of oxygen (pO2 ) range investigated. The histograms of the tumor pO2 images were skewed for both spin probes, and Ox071 showed more frequency counts at pO2 > 32 mm Hg. In the normoxic kidney model, there was a clear delineation between the high pO2 cortex and the low pO2 medulla regions. The histogram of high-resolution kidney oximetry image using Ox071 was nearly symmetrical and frequency counts were seen up to 55 mm Hg, which were missed in Ox063 imaging. CONCLUSION: As an oximetric probe, Ox071 has clear advantages over Ox063 in terms of sensitivity and the pO2 dynamic range.


Asunto(s)
Neoplasias , Oximetría , Ratones , Animales , Espectroscopía de Resonancia por Spin del Electrón/métodos , Oximetría/métodos , Oxígeno , Imagenología Tridimensional
2.
NMR Biomed ; 35(10): e4783, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35661282

RESUMEN

Reoxygenation has a significant impact on the tumor response to radiotherapy. With developments in radiotherapy technology, the relevance of the reoxygenation phenomenon in treatment efficacy has been a topic of interest. Evaluating the reoxygenation in the tumor microenvironment throughout the course of radiation therapy is important in developing effective treatment strategies. In the current study, we used electron paramagnetic resonance imaging (EPRI) to directly map and quantify the partial oxygen pressure (pO2 ) in tumor tissues. Human colorectal cancer cell lines, HT29 and HCT116, were used to induce tumor growth in female athymic nude mice. Tumors were irradiated with 3, 10, or 20 Gy using an x-ray irradiator. Prior to each EPRI scan, magnetic resonance imaging (MRI) was performed to obtain T2-weighted anatomical images for reference. The differences in the mean pO2 were determined through two-tailed Student's t-test and one-way analysis of variance. The median pO2 60 min after irradiation was found to be lower in HCT116 than in HT29 (9.1 ± 1.5 vs. 14.0 ± 1.0 mmHg, p = 0.045). There was a tendency for delayed and incomplete recovery of pO2 in the HT29 tumor when a higher dose of irradiation (10 and 20 Gy) was applied. Moreover, there was a dose-dependent increase in the hypoxic areas (pO2  < 10 mmHg) 2 and 24 h after irradiation in all groups. In addition, an area that showed pO2 fluctuation between hypoxia and normoxia (pO2  > 10 mmHg) was also identified surrounding the region with stable hypoxia, and it slightly enlarged after recovery from acute hypoxia. In conclusion, we demonstrated the reoxygenation phenomenon in an in vivo xenograft model study using EPRI. These findings may lead to new knowledge regarding the reoxygenation process and possibilities of a new radiation therapy concept, namely, reoxygenation-based radiation therapy.


Asunto(s)
Hipoxia , Neoplasias , Animales , Hipoxia de la Célula , Espectroscopía de Resonancia por Spin del Electrón/métodos , Femenino , Humanos , Ratones , Ratones Desnudos , Oxígeno/metabolismo , Microambiente Tumoral
3.
Magn Reson Med ; 85(1): 42-48, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32697878

RESUMEN

PURPOSE: In dynamic nuclear polarization (DNP), the solution needs to form a glass to attain significant levels of polarization in reasonable time periods. Molecules that do not form glasses by themselves are often mixed with glass forming excipients. Although glassing agents are often essential in DNP studies, they have the potential to perturb the metabolic measurements that are being studied. Glycerol, the glassing agent of choice for in vivo DNP studies, is effective in reducing ice crystal formation during freezing, but is rapidly metabolized, potentially altering the redox and adenosine triphosphate balance of the system. METHODS: DNP buildup curves of 13 C urea and alanine with OX063 in the presence of trehalose, glycerol, and other polyol excipients were measured as a function of concentration. T1 and Tm relaxation times for OX063 in the presence of trehalose were measured by EPR. RESULTS: Approximately 15-20 wt% trehalose gives a glass that polarizes samples more rapidly than the commonly used 60%-wt formulation of glycerol and yields similar polarization levels within clinically relevant timeframes. CONCLUSIONS: Trehalose may be an attractive biologically inert alternative to glycerol for situations where there may be concerns about glycerol's glucogenic potential and possible alteration of the adenosine triphosphate/adenosine diphosphate and redox balance.


Asunto(s)
Glicerol , Compuestos Heterocíclicos , Trehalosa , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
4.
NMR Biomed ; 34(7): e4514, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33939204

RESUMEN

Dynamic nuclear polarization (DNP) of 13 C-labeled substrates enables the use of magnetic resonance imaging (MRI) to monitor specific enzymatic reactions in tumors and offers an opportunity to investigate these differences. In this study, DNP-MRI chemical shift imaging with hyperpolarized [1-13 C] pyruvate was conducted to evaluate the metabolic change in glycolytic profiles after radiation of two glioma stem-like cell-derived gliomas (GBMJ1 and NSC11) and an adherent human glioblastoma cell line (U251) in an orthotopic xenograft mouse model. The DNP-MRI showed an increase in Lac/Pyr at 6 and 16 h after irradiation (18% ± 4% and 14% ± 3%, respectively; mean ± SEM) compared with unirradiated controls in GBMJ1 tumors, whereas no significant change was observed in U251 and NSC11 tumors. Metabolomic analysis likewise showed a significant increase in lactate in GBMJ1 tumors at 16 h. An immunoblot assay showed upregulation of lactate dehydrogenase-A expression in GBMJ1 following radiation exposure, consistent with DNP-MRI and metabolomic analysis. In conclusion, our preclinical study demonstrates that the DNP-MRI technique has the potential to be a powerful diagnostic method with which to evaluate GBM tumor metabolism before and after radiation in the clinical setting.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13 , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Animales , Línea Celular Tumoral , Glioblastoma/diagnóstico por imagen , Humanos , Lactato Deshidrogenasa 5/metabolismo , Ácido Láctico/metabolismo , Imagen por Resonancia Magnética , Metabolómica , Ratones Desnudos , Ácido Pirúvico/metabolismo
5.
Magn Reson Med ; 84(6): 3351-3365, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32501614

RESUMEN

PURPOSE: With the initiation of human hyperpolarized 13 C (HP-13 C) trials at multiple sites and the development of improved acquisition methods, there is an imminent need to maximally extract diagnostic information to facilitate clinical interpretation. This study aims to improve human HP-13 C MR spectroscopic imaging through means of Tensor Rank truncation-Image enhancement (TRI) and optimal receiver combination (ORC). METHODS: A data-driven processing framework for dynamic HP 13 C MR spectroscopic imaging (MRSI) was developed. Using patient data sets acquired with both multichannel arrays and single-element receivers from the brain, abdomen, and pelvis, we examined the theory and application of TRI, as well as 2 ORC techniques: whitened singular value decomposition (WSVD) and first-point phasing. Optimal conditions for TRI were derived based on bias-variance trade-off. RESULTS: TRI and ORC techniques together provided a 63-fold mean apparent signal-to-noise ratio (aSNR) gain for receiver arrays and a 31-fold gain for single-element configurations, which particularly improved quantification of the lower-SNR-[13 C]bicarbonate and [1-13 C]alanine signals that were otherwise not detectable in many cases. Substantial SNR enhancements were observed for data sets that were acquired even with suboptimal experimental conditions, including delayed (114 s) injection (8× aSNR gain solely by TRI), or from challenging anatomy or geometry, as in the case of a pediatric patient with brainstem tumor (597× using combined TRI and WSVD). Improved correlation between elevated pyruvate-to-lactate conversion, biopsy-confirmed cancer, and mp-MRI lesions demonstrated that TRI recovered quantitative diagnostic information. CONCLUSION: Overall, this combined approach was effective across imaging targets and receiver configurations and could greatly benefit ongoing and future HP 13 C MRI research through major aSNR improvements.


Asunto(s)
Aumento de la Imagen , Imagen por Resonancia Magnética , Isótopos de Carbono , Niño , Humanos , Espectroscopía de Resonancia Magnética , Ácido Pirúvico , Relación Señal-Ruido
6.
NMR Biomed ; 32(10): e3966, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30169896

RESUMEN

Magnetic resonance-based approaches to obtain metabolic information on cancer have been explored for decades. Electron paramagnetic resonance (EPR) has been developed to pursue metabolic profiling and successfully used to monitor several physiologic parameters such as pO2 , pH, and redox status. All these parameters are associated with pathophysiology of various diseases. Especially in oncology, cancer hypoxia has been intensively studied because of its relationship with metabolic alterations, acquiring treatment resistance, or a malignant phenotype. Thus, pO2 imaging leads to an indirect metabolic assessment in this regard. Proton electron double-resonance imaging (PEDRI) is an imaging technique to visualize EPR by using the Overhauser effect. Most biological parameters assessed in EPR can be visualized using PEDRI. However, EPR and PEDRI have not been evaluated sufficiently for clinical application due to limitations such as toxicity of the probes or high specific absorption rate. Hyperpolarized (HP) 13 C MRI is a novel imaging technique that can directly visualize the metabolic profile. Production of metabolites of the HP 13 C probe delivered to target tissue are evaluated in this modality. Unlike EPR or PEDRI, which require the injection of radical probes, 13 C MRI requires a probe that can be physiologically metabolized and efficiently hyperpolarized. Among several methods for hyperpolarizing probes, dissolution dynamic nuclear hyperpolarization is a widely used technique for in vivo imaging. Pyruvate is the most suitable probe for HP 13 C MRI because it is part of the glycolytic pathway and the high efficiency of pyruvate-to-lactate conversion is a distinguishing feature of cancer. Its clinical applicability also makes it a promising metabolic imaging modality. Here, we summarize the applications of these indirect and direct MR-based metabolic assessments focusing on pO2 and pyruvate-to-lactate conversion. The two parameters are strongly associated with each other, hence the acquired information is potentially interchangeable when evaluating treatment response to oxygen-dependent cancer therapies.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias/metabolismo , Animales , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Metabolómica , Oxígeno/metabolismo
7.
Magn Reson Med ; 80(5): 2275-2287, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29582458

RESUMEN

PURPOSE: Spin-lattice relaxation rate (R1 )-based time-domain EPR oximetry is reported for in vivo applications using a paramagnetic probe, a trityl-based Oxo71. METHODS: The R1 dependence of the trityl probe Oxo71 on partial oxygen pressure (pO2 ) was assessed using single-point imaging mode of spatial encoding combined with rapid repetition, similar to T1 -weighted MRI, for which R1 was determined from 22 repetition times ranging from 2.1 to 40.0 µs at 300 MHz. The pO2 maps of a phantom with 3 tubes containing 2 mM Oxo71 solutions equilibrated at 0%, 2%, and 5% oxygen were determined by R1 and apparent spin-spin relaxation rate ( R2*) simultaneously. RESULTS: The pO2 maps derived from R1 and R2* agreed with the known pO2 levels in the tubes of Oxo71. However, the histograms of pO2 revealed that R1 offers better pO2 resolution than R2* in low pO2 regions. The SDs of pixels at 2% pO2 (15.2 mmHg) were about 5 times lower in R1 -based estimation than R2*-based estimation (mean ± SD: 13.9 ± 1.77 mmHg and 18.3 ± 8.70 mmHg, respectively). The in vivo pO2 map obtained from R1 -based assessment displayed a homogeneous profile in low pO2 regions in tumor xenografts, consistent with previous reports on R2*-based oximetric imaging. The scan time to obtain the R1 map can be significantly reduced using 3 repetition times ranging from 4.0 to 12.0 µs. CONCLUSION: Using the single-point imaging modality, R1 -based oximetry imaging with useful spatial and oxygen resolutions for small animals was demonstrated.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Oximetría/métodos , Animales , Línea Celular Tumoral , Femenino , Ratones , Ratones Endogámicos C3H , Oxígeno/sangre , Fantasmas de Imagen
8.
Magn Reson Med ; 80(5): 2288-2298, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29603378

RESUMEN

PURPOSE: To develop an implantable wireless coil with parametric amplification capabilities for time-domain electron paramagnetic resonance (EPR) spectroscopy operating at 300 MHz. METHODS: The wireless coil and lithium phthalocyanine (LiPc), a solid paramagnetic probe, were each embedded individually in a biocompatible polymer polydimethoxysiloxane (PDMS). EPR signals from the LiPc embedded in PDMS (LiPc/PDMS) were generated by a transmit-receive surface coil tuned to 300 MHz. Parametric amplification was configured with an external pumping coil tuned to 600 MHz and placed between the surface coil resonator and the wireless coil. RESULTS: Phantom studies showed significant enhancement in signal to noise using the pumping coil. However, no influence of the pumping coil on the oxygen-dependent EPR spectral linewidth of LiPc/PDMS was observed, suggesting the validity of parametric amplification of EPR signals for oximetry by implantation of the encapsulated wireless coil and LiPc/PDMS in deep regions of live objects. In vivo studies demonstrate the feasibility of this approach to longitudinally monitor tissue pO2 in vivo and also monitor acute changes in response to pharmacologic challenges. The encapsulated wireless coil and LiPc/PDMS engendered no host immune response when implanted for ∼3 weeks and were found to be well tolerated. CONCLUSIONS: This approach may find applications for monitoring tissue oxygenation to better understand the pathophysiology associated with wound healing, organ transplantation, and ischemic diseases.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Oximetría/instrumentación , Tecnología Inalámbrica/instrumentación , Animales , Diseño de Equipo , Femenino , Ratones , Ratones Desnudos , Fantasmas de Imagen , Prótesis e Implantes , Cicatrización de Heridas
9.
J Appl Clin Med Phys ; 19(2): 121-127, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29368420

RESUMEN

It is important to improve the magnitude of dose variation that is caused by the interplay effect. The aim of this study was to investigate the impact of the number of breaths (NBs) to the dose variation for VMAT-SBRT to lung cancer. Data on respiratory motion and multileaf collimator (MLC) sequence were collected from the cases of 30 patients who underwent radiotherapy with VMAT-SBRT for lung cancer. The NBs in the total irradiation time with VMAT and the maximum craniocaudal amplitude of the target were calculated. The MLC sequence complexity was evaluated using the modulation complexity score for VMAT (MCSv). Static and dynamic measurements were performed using a cylindrical respiratory motion phantom and a micro ionization chamber. The 1 standard deviation which were obtained from 10 dynamic measurements for each patient were defined as dose variation caused by the interplay effect. The dose distributions were also verified with radiochromic film to detect undesired hot and cold dose spot. Dose measurements were also performed with different NBs in the same plan for 16 patients in 30 patients. The correlations between dose variations and parameters assessed for each treatment plan including NBs, MCSv, the MCSv/amplitude quotient (TMMCSv), and the MCSv/amplitude quotient × NBs product (IVS) were evaluated. Dose variation was decreased with increasing NBs, and NBs of >40 times maintained the dose variation within 3% in 15 cases. The correlation between dose variation and IVS which were considered NBs was shown stronger (R2  = 0.43, P < 0.05) than TMMCSv (R2  = 0.32, P < 0.05). The NBs is an important factor to reduce the dose variation. The patient who breathes >40 times during irradiation of two partial arcs VMAT (i.e., NBs = 16 breaths per minute) may be suitable for VMAT-SBRT for lung cancer.


Asunto(s)
Algoritmos , Neoplasias Pulmonares/cirugía , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Planificación de la Radioterapia Asistida por Computador/normas , Radioterapia de Intensidad Modulada/métodos , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , Movimiento (Física) , Pronóstico , Dosificación Radioterapéutica , Respiración
10.
J Anesth ; 27(5): 768-70, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23553148

RESUMEN

A 75-year-old man who had undergone left upper lobectomy of the lung exhibited fever and insomnia on postoperative day (POD) 1 and muscle rigidity, autonomic instability, and somnolence on POD2 after epidural administration of droperidol and withdrawal of oral etizolam. He had not been known to have any neuromuscular diseases or psychiatric diseases, with the exception of anxiety disorder. Brain computed tomography did not show cerebrovascular disorders. Consultation with a neurologist led to a suspicion of neuroleptic malignant syndrome (NMS). Epidural droperidol was stopped and administration of dantrolene was initiated. These measures, in addition to supportive care, only partially ameliorated the symptoms of the patient, and consciousness disturbance developed; the patient finally became comatose on POD3. However, intravenous diazepam (10 mg) improved his symptoms abruptly. Subsequently, oral administration of lorazepam (1 mg/day) was started, and his symptoms disappeared within 2 days (POD5). Although NMS-like symptoms are rarely seen in clinical practice, some factors may induce it during the perioperative period, such as the administration of dopamine antagonists and the cessation of benzodiazepines. Intravenous diazepam is an effective treatment in cases with suspected gamma-aminobutyric acid (GABA) hypoactivity at the GABA(A) receptor induced by the cessation of benzodiazepines.


Asunto(s)
Diazepam/uso terapéutico , Síndrome Neuroléptico Maligno/tratamiento farmacológico , Complicaciones Posoperatorias/tratamiento farmacológico , Administración Intravenosa , Anciano , Benzodiazepinas/efectos adversos , Humanos , Masculino , Síndrome Neuroléptico Maligno/etiología
11.
Metabolites ; 13(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36676994

RESUMEN

Imaging tumor microenvironments such as hypoxia, oxygenation, redox status, and/or glycolytic metabolism in tissues/cells is useful for diagnostic and prognostic purposes. New imaging modalities are under development for imaging various aspects of tumor microenvironments. Electron Paramagnetic Resonance Imaging (EPRI) though similar to NMR/MRI is unique in its ability to provide quantitative images of pO2 in vivo. The short electron spin relaxation times have been posing formidable challenge to the technology development for clinical application. With the availability of the narrow line width trityl compounds, pulsed EPR imaging techniques were developed for pO2 imaging. EPRI visualizes the exogenously administered spin probes/contrast agents and hence lacks the complementary morphological information. Dynamic nuclear polarization (DNP), a phenomenon that transfers the high electron spin polarization to the surrounding nuclear spins (1H and 13C) opened new capabilities in molecular imaging. DNP of 13C nuclei is utilized in metabolic imaging of 13C-labeled compounds by imaging specific enzyme kinetics. In this article, imaging strategies mapping physiologic and metabolic aspects in vivo are reviewed within the framework of their application in cancer research, highlighting the potential and challenges of each of them.

12.
Sci Rep ; 13(1): 14699, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679461

RESUMEN

In vivo deuterated water (2H2O) labeling leads to deuterium (2H) incorporation into biomolecules of proliferating cells and provides the basis for its use in cell kinetics research. We hypothesized that rapidly proliferating cancer cells would become preferentially labeled with 2H and, therefore, could be visualized by deuterium magnetic resonance imaging (dMRI) following a brief period of in vivo systemic 2H2O administration. We initiated systemic 2H2O administration in two xenograft mouse models harboring either human colorectal, HT-29, or pancreatic, MiaPaCa-2, tumors and 2H2O level of ~ 8% in total body water (TBW). Three schemas of 2H2O administration were tested: (1) starting at tumor seeding and continuing for 7 days of in vivo growth with imaging on day 7, (2) starting at tumor seeding and continuing for 14 days of in vivo growth with imaging on day 14, and (3) initiation of labeling following a week of in vivo tumor growth and continuing until imaging was performed on day 14. Deuterium chemical shift imaging of the tumor bearing limb and contralateral control was performed on either day 7 of 14 after tumor seeding, as described. After 14 days of in vivo tumor growth and 7 days of systemic labeling with 2H2O, a clear deuterium contrast was demonstrated between the xenografts and normal tissue. Labeling in the second week after tumor implantation afforded the highest contrast between neoplastic and healthy tissue in both models. Systemic labeling with 2H2O can be used to create imaging contrast between tumor and healthy issue, providing a non-radioactive method for in vivo cancer imaging.


Asunto(s)
Imagen por Resonancia Magnética , Siembra Neoplásica , Humanos , Animales , Ratones , Xenoinjertos , Deuterio , Trasplante Heterólogo , Administración Cutánea , Modelos Animales de Enfermedad
13.
Antioxid Redox Signal ; 39(7-9): 432-444, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37051681

RESUMEN

Aims: Pancreatic ductal adenocarcinomas (PDACs) form hypovascular and hypoxic tumors, which are difficult to treat with current chemotherapy regimens. Gemcitabine (GEM) is often used as a first-line treatment for PDACs but has issues with chemoresistance and penetration in the interior of the tumor. Evofosfamide, a hypoxia-activated prodrug, has been shown to be effective in combination with GEM, although the mechanism of each drug on the other has not been established. We used mouse xenografts from two cell lines (MIA Paca-2 and SU.86.86) with different tumor microenvironmental characteristics to probe the action of each drug on the other. Results: GEM treatment enhanced survival times in mice with SU.86.86 leg xenografts (hazard ratio [HR] = 0.35, p = 0.03) but had no effect on MIA Paca-2 mice (HR = 0.91, 95% confidence interval = 0.37-2.25, p = 0.84). Conversely, evofosfamide did not improve survival times in SU.86.86 mice to a statistically significant degree (HR = 0.57, p = 0.22). Electron paramagnetic resonance imaging showed that oxygenation worsened in MIA Paca-2 tumors when treated with GEM, providing a direct mechanism for the activation of the hypoxia-activated prodrug evofosfamide by GEM. Sublethal amounts of either treatment enhanced the toxicity of other treatment in vitro in SU.86.86 but not in MIA Paca-2. By the biomarker γH2AX, combination treatment increased the number of double-stranded DNA lesions in vitro for SU.86.86 but not MIA Paca-2. Innovation and Conclusion: The synergy between GEM and evofosfamide appears to stem from the dual action of GEMs effect on tumor vasculature and inhibition by GEM of the homologous recombination DNA repair process. Antioxid. Redox Signal. 39, 432-444.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Profármacos , Humanos , Animales , Ratones , Gemcitabina , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Xenoinjertos , Profármacos/farmacología , Profármacos/uso terapéutico , Reparación del ADN por Recombinación , Línea Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Hipoxia/tratamiento farmacológico , Neoplasias Pancreáticas
14.
Med Phys ; 39(1): 48-54, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22225274

RESUMEN

PURPOSE: To experimentally investigate the effects of variations in respiratory motion during breath-holding (BH) at end-exhalation (EE) on intensity-modulated radiotherapy (BH-IMRT) dose distribution using a motor-driven base, films, and an ionization chamber. METHODS: Measurements were performed on a linear accelerator, which has a 120-leaf independently moving multileaf collimator with 5-mm leaf width at the isocenter for the 20-cm central field. Polystyrene phantoms with dimensions of 40 × 40 × 10 cm were set on a motor-driven base. All gantry angles of seven IMRT plans (a total of 35 fields) were changed to zero, and doses were then delivered to a film placed at a depth of 4 cm and an ionization chamber at a depth of 5 cm in the phantom with a dose rate of 600 MU/min under the following conditions: pulsation from the abdominal aorta and baseline drift with speeds of 0.2 mm/s (BD(0.2mm/s)) and 0.4 mm/s (BD(0.4mm/s)). As a reference for comparison, doses were also delivered to the chamber and film under stationary conditions. RESULTS: In chamber measurements, means ± standard deviations of the dose deviations between stationary and moving conditions were -0.52% ± 1.03% (range: -3.41-1.05%), -0.07% ± 1.21% (range: -1.88-4.31%), and 0.03% ± 1.70% (range: -2.70-6.41%) for pulsation, BD(0.2mm/s), and BD(0.4mm/s), respectively. The γ passing rate ranged from 99.5% to 100.0%, even with the criterion of 2%/1 mm for pulsation pattern. In the case of BD(0.4mm/s), the γ passing rate for four of 35 fields (11.4%) did not reach 90% with a criterion of 3%/3 mm. The differences in γ passing rate between BD(0.2mm/s) and BD(0.4mm/s) were statistically significant for each criterion. Taking γ passing rates of > 90% as acceptable with a criterion of 3%/3 mm, large differences were observed in the γ passing rate between the baseline drift of ≤5 mm and that of >5 mm (minimum γ passing rate: 92.0% vs 82.7%; p < 0.01). CONCLUSIONS: This study suggested that the baseline drift of >5 mm should be avoided in the BH-IMRT.


Asunto(s)
Neoplasias Pancreáticas/radioterapia , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Mecánica Respiratoria , Humanos , Neoplasias Pancreáticas/fisiopatología , Dosificación Radioterapéutica , Radioterapia Conformacional , Resultado del Tratamiento
15.
Antioxid Redox Signal ; 36(1-3): 144-159, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34428981

RESUMEN

Significance: Oxygen imaging techniques, which can probe the spatiotemporal heterogeneity of tumor oxygenation, could be of significant clinical utility in radiation treatment planning and in evaluating the effectiveness of hypoxia-activated prodrugs. To fulfill these goals, oxygen imaging techniques should be noninvasive, quantitative, and capable of serial imaging, as well as having sufficient temporal resolution to detect the dynamics of tumor oxygenation to distinguish regions of chronic and acute hypoxia. Recent Advances: No current technique meets all these requirements, although all have strengths in certain areas. The current status of positron emission tomography (PET)-based hypoxia imaging, oxygen-enhanced magnetic resonance imaging (MRI), 19F MRI, and electron paramagnetic resonance (EPR) oximetry are reviewed along with their strengths and weaknesses for planning hypoxia-guided, intensity-modulated radiation therapy and detecting treatment response for hypoxia-targeted prodrugs. Critical Issues: Spatial and temporal resolution emerges as a major concern for these areas along with specificity and quantitative response. Although multiple oxygen imaging techniques have reached the investigative stage, clinical trials to test the therapeutic effectiveness of hypoxia imaging have been limited. Future Directions: Imaging elements of the redox environment besides oxygen by EPR and hyperpolarized MRI may have a significant impact on our understanding of the basic biology of the reactive oxygen species response and may extend treatment possibilities.


Asunto(s)
Hipoxia , Tomografía de Emisión de Positrones , Espectroscopía de Resonancia por Spin del Electrón/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Oxígeno
16.
Neoplasia ; 30: 100793, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35523073

RESUMEN

PURPOSE: PEGylated human hyaluronidase (PEGPH20) enzymatically depletes hyaluronan, an important component of the extracellular matrix, increasing the delivery of therapeutic molecules. Combinations of chemotherapy and PEGPH20, however, have been unsuccessful in Phase III clinical trials. We hypothesize that by increasing tumor oxygenation by improving vascular patency and perfusion, PEGPH20 will also act as a radiosensitization agent. EXPERIMENTAL DESIGN: The effect of PEGPH20 on radiation treatment was analyzed with respect to tumor growth, survival time, p02, local blood volume, and the perfusion/permeability of blood vessels in a human pancreatic adenocarcinoma BxPC3 mouse model overexpressing hyaluronan synthase 3 (HAS3). RESULTS: Mice overexpressing HAS3 developed fast growing, radiation resistant tumors that became rapidly more hypoxic as time progressed. Treatment with PEGPH20 increased survival times when used in combination with radiation therapy, significantly more than either radiation therapy or PEGPH20 alone. In mice that overexpressed HAS3, EPR imaging showed an increase in local pO2 that could be linked to increases in perfusion/permeability and local blood volume immediately after PEGPH20 treatment. Hyperpolarized [1-13C] pyruvate suggested PEGPH20 caused a metabolic shift towards decreased glycolytic flux. These effects were confined to the mice overexpressing HAS3 - no effect of PEGPH20 on survival, radiation treatment, or pO2 was seen in wild type BxPC3 tumors. CONCLUSIONS: PEGPH20 may be useful for radiosensitization of pancreatic cancer but only in the subset of tumors with substantial hyaluronan accumulation. The response of the treatment may potentially be monitored by non-invasive imaging of the hemodynamic and metabolic changes in the tumor microenvironment.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/tratamiento farmacológico , Animales , Xenoinjertos , Humanos , Ácido Hialurónico/metabolismo , Ácido Hialurónico/farmacología , Hialuronoglucosaminidasa/metabolismo , Hialuronoglucosaminidasa/farmacología , Hialuronoglucosaminidasa/uso terapéutico , Ratones , Imagen Molecular , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/radioterapia , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico , Microambiente Tumoral , Neoplasias Pancreáticas
17.
J Anesth ; 25(1): 104-7, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21052735

RESUMEN

Both severe hypokalemia and persistent hypertension are clinical symptoms of hyperaldosteronism. Hyperaldosteronism may occur as a primary or secondary syndrome. Excess ACTH produced ectopically by tumors may induce hyperaldosteronism through the mineralocorticoid activity of glucocorticoids that are upregulated by ACTH. Licorice, with the active ingredient glycyrrhiza, is also a well-known inducer of hyperaldosteronism under specific conditions. In this report, we describe a case of severe hypokalemia caused by ectopic ACTH syndrome (EAS) elicited by an intrathoracic carcinoid tumor, which had transformed to produce ACTH during the 6-year clinical course, and was modulated by licorice ingestion. Hypokalemia was not clearly recognized preoperatively but became obvious within 3 h of general anesthesia with epidural blockade. At the end of anesthesia, arterial blood gas analysis indicated severe hypokalemia ([K(+)] = 1.7 mEq/l) and metabolic alkalosis (pH 7.56, PaCO(2) = 54.9 mmHg, HCO(3)(-) = 44.5 mmol/l, BE = 21.8 mmol/l), without any typical symptoms such as muscle weakness or ECG abnormalities. The hypokalemia was resistant to potassium supplementation and persisted for 4 days. Perioperative imbalance between the administration and elimination of potassium and surgical stress might contribute to the rapid exacerbation and induce the clinical manifestation of EAS.


Asunto(s)
Síndrome de ACTH Ectópico/diagnóstico , Hipertensión/diagnóstico , Hipopotasemia/diagnóstico , Síndrome de ACTH Ectópico/complicaciones , Adyuvantes Anestésicos , Anestesia , Anestésicos Intravenosos , Análisis de los Gases de la Sangre , Presión Sanguínea/fisiología , Tumor Carcinoide/complicaciones , Tumor Carcinoide/cirugía , Fentanilo , Frecuencia Cardíaca/fisiología , Hormonas/sangre , Humanos , Hipertensión/complicaciones , Hipopotasemia/complicaciones , Masculino , Persona de Mediana Edad , Nicardipino , Periodo Perioperatorio , Piperidinas , Neumonía por Pneumocystis/complicaciones , Trastornos Psicóticos/etiología , Remifentanilo , Neoplasias Torácicas/complicaciones , Neoplasias Torácicas/cirugía , Tomografía Computarizada por Rayos X
18.
Cancer Res ; 81(13): 3693-3705, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33837042

RESUMEN

Immune checkpoint blockade (ICB) has become a standard therapy for several cancers, however, the response to ICB is inconsistent and a method for noninvasive assessment has not been established to date. To investigate the capability of multimodal imaging to evaluate treatment response to ICB therapy, hyperpolarized 13C MRI using [1-13C] pyruvate and [1,4-13C2] fumarate and dynamic contrast enhanced (DCE) MRI was evaluated to detect early changes in tumor glycolysis, necrosis, and intratumor perfusion/permeability, respectively. Mouse tumor models served as platforms for high (MC38 colon adenocarcinoma) and low (B16-F10 melanoma) sensitivity to dual ICB of PD-L1 and CTLA4. Glycolytic flux significantly decreased following treatment only in the less sensitive B16-F10 tumors. Imaging [1,4-13C2] fumarate conversion to [1,4-13C2] malate showed a significant increase in necrotic cell death following treatment in the ICB-sensitive MC38 tumors, with essentially no change in B16-F10 tumors. DCE-MRI showed significantly increased perfusion/permeability in MC38-treated tumors, whereas a similar, but statistically nonsignificant, trend was observed in B16-F10 tumors. When tumor volume was also taken into consideration, each imaging biomarker was linearly correlated with future survival in both models. These results suggest that hyperpolarized 13C MRI and DCE MRI may serve as useful noninvasive imaging markers to detect early response to ICB therapy. SIGNIFICANCE: Hyperpolarized 13C MRI and dynamic contrast enhanced MRI in murine tumor models provide useful insight into evaluating early response to immune checkpoint blockade therapy.See related commentary by Cullen and Keshari, p. 3444.


Asunto(s)
Neoplasias del Colon/patología , Glucólisis , Inhibidores de Puntos de Control Inmunológico/farmacología , Imagen por Resonancia Magnética/métodos , Melanoma Experimental/patología , Imagen Molecular/métodos , Ácido Pirúvico/metabolismo , Animales , Apoptosis , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/inmunología , Neoplasias del Colon/metabolismo , Femenino , Humanos , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Antioxid Redox Signal ; 35(11): 904-915, 2021 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-32787454

RESUMEN

Aims: In hypoxic tumor microenvironments, the strongly reducing redox environment reduces evofosfamide (TH-302) to release a cytotoxic bromo-isophosphoramide (Br-IPM) moiety. This drug therefore preferentially attacks hypoxic regions in tumors where other standard anticancer treatments such as chemotherapy and radiation therapy are often ineffective. Various combination therapies with evofosfamide have been proposed and tested in preclinical and clinical settings. However, the treatment effect of evofosfamide monotherapy on tumor hypoxia has not been fully understood, partly due to the lack of quantitative methods to assess tumor pO2in vivo. Here, we use quantitative pO2 imaging by electron paramagnetic resonance (EPR) to evaluate the change in tumor hypoxia in response to evofosfamide treatment using two pancreatic ductal adenocarcinoma xenograft models: MIA Paca-2 tumors responding to evofosfamide and Su.86.86 tumors that do not respond. Results: EPR imaging showed that oxygenation improved globally after evofosfamide treatment in hypoxic MIA Paca-2 tumors, in agreement with the ex vivo results obtained from hypoxia staining by pimonidazole and in apparent contrast to the decrease in Ktrans observed in dynamic contrast-enhanced magnetic resonance imaging (DCE MRI). Innovations: The observation that evofosfamide not only kills the hypoxic region of the tumor but also improves oxygenation in the residual tumor regions provides a rationale for combination therapies using radiation and antiproliferatives post evofosfamide for improved outcomes. Conclusion: This study suggests that reoxygenation after evofosfamide treatment is due to decreased oxygen demand rather than improved perfusion. Following the change in pO2 after treatment may therefore yield a way of monitoring treatment response. Antioxid. Redox Signal. 35, 904-915.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/terapia , Hipoxia de la Célula/efectos de los fármacos , Nitroimidazoles/farmacología , Neoplasias Pancreáticas/terapia , Mostazas de Fosforamida/farmacología , Profármacos/farmacología , Animales , Antineoplásicos/química , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Nitroimidazoles/química , Oxidación-Reducción , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Mostazas de Fosforamida/química , Profármacos/química
20.
Sci Rep ; 11(1): 12155, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108512

RESUMEN

Drastic sensitivity enhancement of dynamic nuclear polarization is becoming an increasingly critical methodology to monitor real-time metabolic and physiological information in chemistry, biochemistry, and biomedicine. However, the limited number of available hyperpolarized 13C probes, which can effectively interrogate crucial metabolic activities, remains one of the major bottlenecks in this growing field. Here, we demonstrate [1-13C] N-acetyl cysteine (NAC) as a novel probe for hyperpolarized 13C MRI to monitor glutathione redox chemistry, which plays a central part of metabolic chemistry and strongly influences various therapies. NAC forms a disulfide bond in the presence of reduced glutathione, which generates a spectroscopically detectable product that is separated from the main peak by a 1.5 ppm shift. In vivo hyperpolarized MRI in mice revealed that NAC was broadly distributed throughout the body including the brain. Its biochemical transformation in two human pancreatic tumor cells in vitro and as xenografts differed depending on the individual cellular biochemical profile and microenvironment in vivo. Hyperpolarized NAC can be a promising non-invasive biomarker to monitor in vivo redox status and can be potentially translatable to clinical diagnosis.


Asunto(s)
Acetilcisteína/metabolismo , Encéfalo/metabolismo , Isótopos de Carbono/análisis , Glutatión/metabolismo , Neoplasias Pancreáticas/patología , Animales , Apoptosis , Proliferación Celular , Humanos , Imagen por Resonancia Magnética , Ratones , Oxidación-Reducción , Neoplasias Pancreáticas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA