RESUMEN
Galvanic Vestibular Stimulation (GVS) has been proposed as an alternative display modality to relay information without increasing demands on the visual or auditory sensory modalities of the wearer or in environments where those modalities cannot be used (e.g., covert night operations). We further investigated this concept with four experiments designed to test: (1) thresholds at which subjects could distinguish between different GVS current amplitudes and polarities, (2) thresholds at which different bipolar (i.e., sinusoidal waveform with current oscillating between left and right directions) current frequencies were distinguishable among room temperature, hot, cold, and windy environments, (3) effects of unipolar (i.e., sinusoidal waveform with current occurring in only the left or right direction) currents on balance performance, and (4) dual-task performance among frequency and polarity modulated GVS conditions during a concordant visual search task. Subjects reliably distinguished between current amplitudes that varied from a pedestal of ± 0.6 mA by a median of 0.03 mA (range of 0.02-0.32 mA) and between unipolar currents at a median amplitude of 0.55 mA (range of 0.32-0.83 mA). GVS frequency thresholds were robust to the environment conditions tested, with no statistical differences found. Sway and balance errors were increased with unipolar currents. GVS thresholds were not impacted by the dual-task paradigm, but the visual search scores were slightly elevated when congruently performing a polarity thresholding task. Overall findings continue to support GVS use as a display modality, but some limitations are noted, such as the use of unipolar currents under scenarios where postural control is important.
Asunto(s)
Equilibrio Postural , Postura , Humanos , Masculino , Femenino , Adulto , Adulto Joven , Postura/fisiología , Equilibrio Postural/fisiología , Estimulación Eléctrica , Ambiente , Desempeño Psicomotor/fisiología , Vestíbulo del Laberinto/fisiología , Umbral Sensorial/fisiologíaRESUMEN
Task-specific training has been shown to be an effective neuromotor rehabilitation intervention, however, this repetitive approach is not always very engaging. Virtual reality (VR) systems are becoming increasingly popular in therapy due to their ability to encourage movement through customizable and immersive environments. Additionally, VR can allow for a standardization of tasks that is often lacking in upper extremity research. Here, 16 healthy participants performed upper extremity movement tasks synced to music, using a commercially available VR game known as Beat Saber. VR tasks were customized to characterize participants' joint angles with respect to each task's specified cardinal direction (inward, outward, upward, or downward) and relative task location (medial, lateral, high, and/or low). Movement levels were designed using three common therapeutic approaches: (1) one arm moving only (unilateral), (2) two arms moving in mirrored directions about the participant's midline (mirrored), or (3) two arms moving in opposing directions about the participant's midline (opposing). Movement was quantified using an XSens System, a wearable inertial measurement unit (IMU) technology. Results reveal a highly engaging and effective approach to quantifying movement strategies. Inward and outward (horizontal) tasks resulted in decreased wrist extension. Upward and downward (vertical) tasks resulted in increased shoulder flexion, wrist radial deviation, wrist ulnar deviation, and elbow flexion. Lastly, compared to opposing, mirrored, and unilateral movement levels often exaggerated joint angles. Virtual reality games, like Beat Saber, offer a repeatable and customizable upper extremity intervention that has the potential to increase motivation in therapeutic applications.