Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur J Immunol ; 54(5): e2350669, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38339772

RESUMEN

The importance of macrophages in adipose tissue (AT) homeostasis and inflammation is well established. However, the potential cues that regulate their function remain incompletely understood. To bridge this important gap, we sought to characterize novel pathways involved using a mouse model of diet-induced obesity. By performing transcriptomics analysis of AT macrophages (ATMs), we found that late-stage ATMs from high-fat diet mice presented with perturbed Notch signaling accompanied by robust proinflammatory and metabolic changes. To explore the hypothesis that the deregulated Notch pathway contributes to the development of AT inflammation and diet-induced obesity, we employed a genetic approach to abrogate myeloid Notch1 and Notch2 receptors. Our results revealed that the combined loss of Notch1 and Notch2 worsened obesity-related metabolic dysregulation. Body and AT weight gain was higher, blood glucose levels increased and metabolic parameters were substantially worsened in deficient mice fed high-fat diet. Moreover, serum insulin and leptin were elevated as were triglycerides. Molecular analysis of ATMs showed that deletion of Notch receptors escalated inflammation through the induction of an M1-like pro-inflammatory phenotype. Our findings thus support a protective role of myeloid Notch signaling in adipose tissue inflammation and metabolic dysregulation.


Asunto(s)
Tejido Adiposo , Dieta Alta en Grasa , Inflamación , Macrófagos , Obesidad , Receptor Notch1 , Receptor Notch2 , Transducción de Señal , Animales , Macrófagos/inmunología , Macrófagos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/inmunología , Ratones , Dieta Alta en Grasa/efectos adversos , Inflamación/inmunología , Inflamación/metabolismo , Transducción de Señal/inmunología , Obesidad/metabolismo , Obesidad/inmunología , Receptor Notch1/metabolismo , Receptor Notch1/genética , Receptor Notch2/metabolismo , Receptor Notch2/genética , Ratones Noqueados , Ratones Endogámicos C57BL , Masculino
2.
Chemistry ; : e202401327, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941241

RESUMEN

The multiplexity of cancer has rendered it the second leading cause of mortality worldwide and theragnostic prodrugs have gained popularity in recent years as a means of treatment. Theragnostic prodrugs enable the simultaneous diagnosis and therapy of tumors via high-precision real-time drug release monitoring. Herein, we report the development of the small theragnostic prodrug GF, based on the nucleoside anticancer agent gemcitabine and the fluorescent dye 5(6)-carboxyfluorescein. We have successfully demonstrated its efficient internalization in tumor cells, showing localization throughout both the early and late endocytic pathways. Its mechanism of cell internalization was evaluated, confirming its independence from nucleoside transporters. Its cellular localization via confocal microscopy revealed a clathrin-mediated endocytosis mechanism, distinguishing it from analogous compounds studied previously. Furthermore, GF exhibited stability across various pH values and in human blood plasma. Subsequently, its in vitro cytotoxicity was assessed in three human cancer cell lines (A549, U87 and T98). Additionally, its pharmacokinetic profile in mice was investigated and the consequent drug release was monitored. Finally, its in vivo visualization was accomplished in zebrafish xenotransplantation models and its in vivo efficacy was evaluated in A549 xenografts. The results unveiled an intriguing efficacy profile, positioning GF as a compelling candidate warranting further investigation.

3.
Adv Sci (Weinh) ; 11(15): e2306027, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38353396

RESUMEN

Temozolomide (TMZ) represents the cornerstone of therapy for glioblastoma (GBM). However, acquisition of resistance limits its therapeutic potential. The human kinome is an undisputable source of druggable targets, still, current knowledge remains confined to a limited fraction of it, with a multitude of under-investigated proteins yet to be characterized. Here, following a kinome-wide RNAi screen, pantothenate kinase 4 (PANK4) isuncovered as a modulator of TMZ resistance in GBM. Validation of PANK4 across various TMZ-resistant GBM cell models, patient-derived GBM cell lines, tissue samples, as well as in vivo studies, corroborates the potential translational significance of these findings. Moreover, PANK4 expression is induced during TMZ treatment, and its expression is associated with a worse clinical outcome. Furthermore, a Tandem Mass Tag (TMT)-based quantitative proteomic approach, reveals that PANK4 abrogation leads to a significant downregulation of a host of proteins with central roles in cellular detoxification and cellular response to oxidative stress. More specifically, as cells undergo genotoxic stress during TMZ exposure, PANK4 depletion represents a crucial event that can lead to accumulation of intracellular reactive oxygen species (ROS) and subsequent cell death. Collectively, a previously unreported role for PANK4 in mediating therapeutic resistance to TMZ in GBM is unveiled.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Proteómica , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Resistencia a Antineoplásicos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral
4.
Mol Ther Oncol ; 32(2): 200818, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38966038

RESUMEN

Bladder cancer (BlCa) is an extensively heterogeneous disease that leads to great variability in tumor evolution scenarios and lifelong patient surveillance, emphasizing the need for modern, minimally invasive precision medicine. Here, we explored the clinical significance of copy number alterations (CNAs) in BlCa. CNA profiling was performed in 15 patient-derived xenografts (PDXs) and validated in The Cancer Genome Atlas BlCa (TCGA-BLCA; n = 408) and Lindgren et al. (n = 143) cohorts. CDKN2A copy number loss was identified as the most frequent CNA in bladder tumors, associated with reduced CDKN2A expression, tumors of a papillary phenotype, and prolonged PDX survival. The study's screening cohort consisted of 243 BlCa patients, and CDKN2A copy number was assessed in genomic DNA and cell-free DNA (cfDNA) from 217 tumors and 189 pre-treatment serum samples, respectively. CDKN2A copy number loss was correlated with superior disease-free and progression-free survival of non-muscle-invasive BlCa (NMIBC) patients. Moreover, a higher CDKN2A index (CDKN2A/LEP ratio) in pre-treatment cfDNA was associated with advanced tumor stage and grade and short-term NMIBC progression to invasive disease, while multivariate models fitted for CDKN2A index in pre-treatment cfDNA offered superior risk stratification of T1/high-grade and EORTC high-risk patients, enhancing prediction of treatment outcome. CDKN2A copy number status could serve as a minimally invasive tool to improve risk stratification and support personalized prognosis in BlCa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA