Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(1): 158-168.e14, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979941

RESUMEN

SARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19. Here, we systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in unexposed individuals, exposed family members, and individuals with acute or convalescent COVID-19. Acute-phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent-phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype. Importantly, SARS-CoV-2-specific T cells were detectable in antibody-seronegative exposed family members and convalescent individuals with a history of asymptomatic and mild COVID-19. Our collective dataset shows that SARS-CoV-2 elicits broadly directed and functionally replete memory T cell responses, suggesting that natural exposure or infection may prevent recurrent episodes of severe COVID-19.


Asunto(s)
Convalecencia , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Linfocitos T/inmunología , Adulto , Anticuerpos Antivirales/inmunología , Infecciones Asintomáticas , Betacoronavirus/inmunología , COVID-19 , Infecciones por Coronavirus/patología , Femenino , Humanos , Memoria Inmunológica , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/patología , SARS-CoV-2
2.
PLoS Pathog ; 20(7): e1012390, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39038044

RESUMEN

Hantaviruses cause the acute zoonotic diseases hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Infected patients show strong systemic inflammation and immune cell activation. NK cells are highly activated in HFRS, suggesting that also other innate lymphoid cells (ILCs) might be responding to infection. Here, we characterized peripheral ILC responses, and measured plasma levels of soluble factors and plasma viral load, in 17 Puumala virus (PUUV)-infected HFRS patients. This revealed an increased frequency of ILC2 in patients, in particular the ILC2 lineage-committed c-Kitlo ILC2 subset. Patients' ILCs showed an activated profile with increased proliferation and displayed altered expression of several homing markers. How ILCs are activated during viral infection is largely unknown. When analyzing PUUV-mediated activation of ILCs in vitro we observed that this was dependent on type I interferons, suggesting a role for type I interferons-produced in response to virus infection-in the activation of ILCs. Further, stimulation of naïve ILC2s with IFN-ß affected ILC2 cytokine responses in vitro, causing decreased IL-5 and IL-13, and increased IL-10, CXCL10, and GM-CSF secretion. These results show that ILCs are activated in HFRS patients and suggest that the classical antiviral type I IFNs are involved in shaping ILC functions.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal , Inmunidad Innata , Interferón Tipo I , Linfocitos , Fiebre Hemorrágica con Síndrome Renal/inmunología , Fiebre Hemorrágica con Síndrome Renal/virología , Humanos , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Inmunidad Innata/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Virus Puumala/inmunología , Masculino , Orthohantavirus/inmunología , Femenino , Adulto , Persona de Mediana Edad , Citocinas/metabolismo , Citocinas/inmunología
3.
J Immunol ; 212(3): 389-396, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117799

RESUMEN

Mucosal-associated invariant T (MAIT) cells are an abundant population of unconventional T cells in humans and play important roles in immune defense against microbial infections. Severe COVID-19 is associated with strong activation of MAIT cells and loss of these cells from circulation. In the present study, we investigated the capacity of MAIT cells to recover after severe COVID-19. In longitudinal paired analysis, MAIT cells initially rebounded numerically and phenotypically in most patients at 4 mo postrelease from the hospital. However, the rebounding MAIT cells displayed signs of persistent activation with elevated expression of CD69, CD38, and HLA-DR. Although MAIT cell function was restored in many patients, a subgroup displayed a predominantly PD-1high functionally impaired MAIT cell pool. This profile was associated with poor expression of IFN-γ and granzyme B in response to IL-12 + L-18 and low levels of polyfunctionality. Unexpectedly, although the overall T cell counts recovered, normalization of the MAIT cell pool failed at 9-mo follow-up, with a clear decline in MAIT cell numbers and a further increase in PD-1 levels. Together, these results indicate an initial transient period of inconsistent recovery of MAIT cells that is not sustained and eventually fails. Persisting MAIT cell impairment in previously hospitalized patients with COVID-19 may have consequences for antimicrobial immunity and inflammation and could potentially contribute to post-COVID-19 health problems.


Asunto(s)
COVID-19 , Células T Invariantes Asociadas a Mucosa , Humanos , Antígenos HLA-DR , Inflamación
4.
Mol Ther ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956870

RESUMEN

Several viruses hijack various forms of endocytosis in order to infect host cells. Here, we report the discovery of a molecule with antiviral properties that we named virapinib, which limits viral entry by macropinocytosis. The identification of virapinib derives from a chemical screen using high-throughput microscopy, where we identified chemical entities capable of preventing infection with a pseudotype virus expressing the spike (S) protein from SARS-CoV-2. Subsequent experiments confirmed the capacity of virapinib to inhibit infection by SARS-CoV-2, as well as by additional viruses, such as mpox virus and TBEV. Mechanistic analyses revealed that the compound inhibited macropinocytosis, limiting this entry route for the viruses. Importantly, virapinib has no significant toxicity to host cells. In summary, we present the discovery of a molecule that inhibits macropinocytosis, thereby limiting the infectivity of viruses that use this entry route such as SARS-CoV2.

5.
J Infect Dis ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421006

RESUMEN

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to severe disease with increased morbidity and mortality among certain risk groups. The presence of autoantibodies against type I interferons (aIFN-Abs) is one mechanism that contributes to severe coronavirus disease 2019 (COVID-19). METHODS: This study aimed to investigate the presence of aIFN-Abs in relation to the soluble proteome, circulating immune cell numbers, and cellular phenotypes, as well as development of adaptive immunity. RESULTS: aIFN-Abs were more prevalent in critical compared to severe COVID-19 but largely absent in the other viral and bacterial infections studied here. The antibody and T-cell response to SARS-CoV-2 remained largely unaffected by the presence aIFN-Abs. Similarly, the inflammatory response in COVID-19 was comparable in individuals with and without aIFN-Abs. Instead, presence of aIFN-Abs had an impact on cellular immune system composition and skewing of cellular immune pathways. CONCLUSIONS: Our data suggest that aIFN-Abs do not significantly influence development of adaptive immunity but covary with alterations in immune cell numbers.

6.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38587456

RESUMEN

Hantaviridae is a family for negative-sense RNA viruses with genomes of about 10.5-14.6 kb. These viruses are maintained in and/or transmitted by fish, reptiles, and mammals. Several orthohantaviruses can infect humans, causing mild, severe, and sometimes-fatal diseases. Hantavirids produce enveloped virions containing three single-stranded RNA segments with open reading frames that encode a nucleoprotein (N), a glycoprotein precursor (GPC), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Hantaviridae, which is available at ictv.global/report/hantaviridae.


Asunto(s)
Virus ARN , Animales , Humanos , Virus ARN de Sentido Negativo , Virión/genética , Nucleoproteínas , Sistemas de Lectura Abierta , Mamíferos
7.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33479167

RESUMEN

Dendritic cells (DCs) and monocytes are crucial mediators of innate and adaptive immune responses during viral infection, but misdirected responses by these cells may contribute to immunopathology. Here, we performed high-dimensional flow cytometry-analysis focusing on mononuclear phagocyte (MNP) lineages in SARS-CoV-2-infected patients with moderate and severe COVID-19. We provide a deep and comprehensive map of the MNP landscape in COVID-19. A redistribution of monocyte subsets toward intermediate monocytes and a general decrease in circulating DCs was observed in response to infection. Severe disease coincided with the appearance of monocytic myeloid-derived suppressor cell-like cells and a higher frequency of pre-DC2. Furthermore, phenotypic alterations in MNPs, and their late precursors, were cell-lineage-specific and associated either with the general response against SARS-CoV-2 or COVID-19 severity. This included an interferon-imprint in DC1s observed in all patients and a decreased expression of the coinhibitory molecule CD200R in pre-DCs, DC2s, and DC3 subsets of severely sick patients. Finally, unsupervised analysis revealed that the MNP profile, alone, pointed to a cluster of COVID-19 nonsurvivors. This study provides a reference for the MNP response to SARS-CoV-2 infection and unravels mononuclear phagocyte dysregulations associated with severe COVID-19.


Asunto(s)
COVID-19/inmunología , Sistema Mononuclear Fagocítico/inmunología , SARS-CoV-2/inmunología , Adulto , COVID-19/epidemiología , COVID-19/metabolismo , COVID-19/virología , Citocinas/inmunología , Células Dendríticas/inmunología , Femenino , Humanos , Interferones/inmunología , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Sistema Mononuclear Fagocítico/metabolismo , Índice de Severidad de la Enfermedad , Suecia
8.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34548411

RESUMEN

Since the outset of the COVID-19 pandemic, increasing evidence suggests that the innate immune responses play an important role in the disease development. A dysregulated inflammatory state has been proposed as a key driver of clinical complications in COVID-19, with a potential detrimental role of granulocytes. However, a comprehensive phenotypic description of circulating granulocytes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients is lacking. In this study, we used high-dimensional flow cytometry for granulocyte immunophenotyping in peripheral blood collected from COVID-19 patients during acute and convalescent phases. Severe COVID-19 was associated with increased levels of both mature and immature neutrophils, and decreased counts of eosinophils and basophils. Distinct immunotypes were evident in COVID-19 patients, with altered expression of several receptors involved in activation, adhesion, and migration of granulocytes (e.g., CD62L, CD11a/b, CD69, CD63, CXCR4). Paired sampling revealed recovery and phenotypic restoration of the granulocytic signature in the convalescent phase. The identified granulocyte immunotypes correlated with distinct sets of soluble inflammatory markers, supporting pathophysiologic relevance. Furthermore, clinical features, including multiorgan dysfunction and respiratory function, could be predicted using combined laboratory measurements and immunophenotyping. This study provides a comprehensive granulocyte characterization in COVID-19 and reveals specific immunotypes with potential predictive value for key clinical features associated with COVID-19.


Asunto(s)
COVID-19/inmunología , Granulocitos/inmunología , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/fisiopatología , Granulocitos/citología , Humanos , Inmunidad Innata , Inmunofenotipificación , Recuento de Leucocitos , Pulmón/fisiopatología , Modelos Biológicos , Puntuaciones en la Disfunción de Órganos , SARS-CoV-2 , Índice de Severidad de la Enfermedad
9.
Emerg Infect Dis ; 29(6): 1240-1243, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37141616

RESUMEN

We performed 2 surveys during 2022 to estimate point prevalences of SARS-CoV-2 infection compared with overall seroprevalence in Sweden. Point prevalence was 1.4% in March and 1.5% in September. Estimated seroprevalence was >80%, including among unvaccinated children. Continued SARS-CoV-2 surveillance is necessary for detecting emerging, possibly more pathogenic variants.


Asunto(s)
COVID-19 , Niño , Humanos , COVID-19/epidemiología , Prevalencia , SARS-CoV-2 , Suecia/epidemiología , Estudios Seroepidemiológicos
10.
Eur J Immunol ; 52(3): 503-510, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34837225

RESUMEN

Corona disease 2019 (COVID-19) affects multiple organ systems. Recent studies have indicated perturbations in the circulating metabolome linked to COVID-19 severity. However, several questions pertain with respect to the metabolome in COVID-19. We performed an in-depth assessment of 1129 unique metabolites in 27 hospitalized COVID-19 patients and integrated results with large-scale proteomic and immunology data to capture multiorgan system perturbations. More than half of the detected metabolic alterations in COVID-19 were driven by patient-specific confounding factors ranging from comorbidities to xenobiotic substances. Systematically adjusting for this, a COVID-19-specific metabolic imprint was defined which, over time, underwent a switch in response to severe acute respiratory syndrome coronavirus-2 seroconversion. Integration of the COVID-19 metabolome with clinical, cellular, molecular, and immunological severity scales further revealed a network of metabolic trajectories aligned with multiple pathways for immune activation, and organ damage including neurological inflammation and damage. Altogether, this resource refines our understanding of the multiorgan system perturbations in severe COVID-19 patients.


Asunto(s)
COVID-19/inmunología , COVID-19/metabolismo , Metaboloma/inmunología , SARS-CoV-2 , Adolescente , Adulto , Anciano , COVID-19/complicaciones , Estudios de Casos y Controles , Enfermedades del Sistema Nervioso Central/etiología , Enfermedades del Sistema Nervioso Central/inmunología , Enfermedades del Sistema Nervioso Central/metabolismo , Estudios de Cohortes , Femenino , Humanos , Masculino , Metabolómica , Persona de Mediana Edad , Especificidad de Órganos , Pandemias , Fenotipo , Proteómica , Índice de Severidad de la Enfermedad , Adulto Joven
12.
PLoS Pathog ; 17(3): e1009400, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33690725

RESUMEN

Innate immune cells like monocytes patrol the vasculature and mucosal surfaces, recognize pathogens, rapidly redistribute to affected tissues and cause inflammation by secretion of cytokines. We previously showed that monocytes are reduced in blood but accumulate in the airways of patients with Puumala virus (PUUV) caused hemorrhagic fever with renal syndrome (HFRS). However, the dynamics of monocyte infiltration to the kidneys during HFRS, and its impact on disease severity are currently unknown. Here, we examined longitudinal peripheral blood samples and renal biopsies from HFRS patients and performed in vitro experiments to investigate the fate of monocytes during HFRS. During the early stages of HFRS, circulating CD14-CD16+ nonclassical monocytes (NCMs) that patrol the vasculature were reduced in most patients. Instead, CD14+CD16- classical (CMs) and CD14+CD16+ intermediate monocytes (IMs) were increased in blood, in particular in HFRS patients with more severe disease. Blood monocytes from patients with acute HFRS expressed higher levels of HLA-DR, the endothelial adhesion marker CD62L and the chemokine receptors CCR7 and CCR2, as compared to convalescence, suggesting monocyte activation and migration to peripheral tissues during acute HFRS. Supporting this hypothesis, increased numbers of HLA-DR+, CD14+, CD16+ and CD68+ cells were observed in the renal tissues of acute HFRS patients compared to controls. In vitro, blood CD16+ monocytes upregulated CD62L after direct exposure to PUUV whereas CD16- monocytes upregulated CCR7 after contact with PUUV-infected endothelial cells, suggesting differential mechanisms of activation and response between monocyte subsets. Together, our findings suggest that NCMs are reduced in blood, potentially via CD62L-mediated attachment to endothelial cells and monocytes are recruited to the kidneys during HFRS. Monocyte mobilization, activation and functional impairment together may influence the severity of disease in acute PUUV-HFRS.


Asunto(s)
Fiebre Hemorrágica con Síndrome Renal/sangre , Fiebre Hemorrágica con Síndrome Renal/inmunología , Monocitos/inmunología , Adulto , Anciano , Femenino , Humanos , Riñón/inmunología , Masculino , Persona de Mediana Edad , Virus Puumala
13.
Respir Res ; 24(1): 62, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829233

RESUMEN

BACKGROUND: COVID-19 remains a major public health challenge, requiring the development of tools to improve diagnosis and inform therapeutic decisions. As dysregulated inflammation and coagulation responses have been implicated in the pathophysiology of COVID-19 and sepsis, we studied their plasma proteome profiles to delineate similarities from specific features. METHODS: We measured 276 plasma proteins involved in Inflammation, organ damage, immune response and coagulation in healthy controls, COVID-19 patients during acute and convalescence phase, and sepsis patients; the latter included (i) community-acquired pneumonia (CAP) caused by Influenza, (ii) bacterial CAP, (iii) non-pneumonia sepsis, and (iv) septic shock patients. RESULTS: We identified a core response to infection consisting of 42 proteins altered in both COVID-19 and sepsis, although higher levels of cytokine storm-associated proteins were evident in sepsis. Furthermore, microbiologic etiology and clinical endotypes were linked to unique signatures. Finally, through machine learning, we identified biomarkers, such as TRIM21, PTN and CASP8, that accurately differentiated COVID-19 from CAP-sepsis with higher accuracy than standard clinical markers. CONCLUSIONS: This study extends the understanding of host responses underlying sepsis and COVID-19, indicating varying disease mechanisms with unique signatures. These diagnostic and severity signatures are candidates for the development of personalized management of COVID-19 and sepsis.


Asunto(s)
COVID-19 , Infecciones Comunitarias Adquiridas , Neumonía , Sepsis , Humanos , COVID-19/complicaciones , Proteómica , Inflamación/complicaciones , Biomarcadores
14.
Emerg Infect Dis ; 28(7): 1471-1474, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35731187

RESUMEN

We assessed standardized mortality ratio in tick-borne encephalitis (TBE) in Sweden, 2004-2017. Standardized mortality ratio for TBE was 3.96 (95% CI 2.55-5.90); no cases in patients <40 years of age were fatal. These results underscore the need for further vaccination efforts in populations at risk for TBE.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Encefalitis Transmitida por Garrapatas/epidemiología , Humanos , Suecia/epidemiología , Vacunación
15.
Emerg Infect Dis ; 28(10): 2119-2121, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35997692

RESUMEN

Given the recent surge in SARS-CoV-2 Omicron infections, we performed a quantitative PCR screening survey during June 28-29, 2022, in Stockholm, Sweden, to investigate SARS-CoV-2 point prevalence in a group with high exposure risk. Results showed SARS-CoV-2 infection in 2.3% of healthcare workers who were asymptomatic at time of sampling.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Prueba de COVID-19 , Personal de Salud , Humanos , Suecia/epidemiología
16.
J Clin Immunol ; 42(6): 1130-1136, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35538387

RESUMEN

Immunodeficient individuals often rely on donor-derived immunoglobulin (Ig) replacement therapy (IGRT) to prevent infections. The passive immunity obtained by IGRT is limited and reflects the state of immunity in the plasma donor population at the time of donation. The objective of the current study was to describe how the potential of passive immunity to SARS-CoV-2 in commercial off-the-shelf Ig products used for IGRT has evolved during the pandemic. Samples were collected from all consecutive Ig batches (n = 60) from three Ig producers used at the Immunodeficiency Unit at Karolinska University Hospital from the start of the SARS-CoV-2 pandemic until January 2022. SARS-CoV-2 antibody concentrations and neutralizing capacity were assessed in all samples. In vivo relevance was assessed by sampling patients with XLA (n = 4), lacking endogenous immunoglobulin synthesis and on continuous Ig substitution, for plasma SARS-CoV-2 antibody concentration. SARS-CoV-2 antibody concentrations in commercial Ig products increased over time but remained inconsistently present. Moreover, Ig batches with high neutralizing capacity towards the Wuhan-strain of SARS-CoV-2 had 32-fold lower activity against the Omicron variant. Despite increasing SARS-CoV-2 antibody concentrations in commercial Ig products, four XLA patients on IGRT had relatively low plasma concentrations of SARS-CoV-2 antibodies with no potential to neutralize the Omicron variant in vitro. In line with this observation, three out the four XLA patients had symptomatic COVID-19 during the Omicron wave. In conclusion, 2 years into the pandemic the amounts of antibodies to SARS-CoV-2 vary considerably among commercial Ig batches obtained from three commercial producers. Importantly, in batches with high concentrations of antibodies directed against the original virus strain, protective passive immunity to the Omicron variant appears to be insufficient.


Asunto(s)
COVID-19 , SARS-CoV-2 , Agammaglobulinemia , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Enfermedades Genéticas Ligadas al Cromosoma X , Humanos
17.
J Intern Med ; 291(1): 72-80, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34459525

RESUMEN

BACKGROUND: Emerging data support detectable immune responses for months after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination, but it is not yet established to what degree and for how long protection against reinfection lasts. METHODS: We investigated SARS-CoV-2-specific humoral and cellular immune responses more than 8 months post-asymptomatic, mild and severe infection in a cohort of 1884 healthcare workers (HCW) and 51 hospitalized COVID-19 patients. Possible protection against SARS-CoV-2 reinfection was analyzed by a weekly 3-month polymerase chain reaction (PCR) screening of 252 HCW that had seroconverted 7 months prior to start of screening and 48 HCW that had remained seronegative at multiple time points. RESULTS: All COVID-19 patients and 96% (355/370) of HCW who were anti-spike IgG positive at inclusion remained anti-spike IgG positive at the 8-month follow-up. Circulating SARS-CoV-2-specific memory T cell responses were detected in 88% (45/51) of COVID-19 patients and in 63% (233/370) of seropositive HCW. The cumulative incidence of PCR-confirmed SARS-CoV-2 infection was 1% (3/252) among anti-spike IgG positive HCW (0.13 cases per 100 weeks at risk) compared to 23% (11/48) among anti-spike IgG negative HCW (2.78 cases per 100 weeks at risk), resulting in a protective effect of 95.2% (95% CI 81.9%-99.1%). CONCLUSIONS: The vast majority of anti-spike IgG positive individuals remain anti-spike IgG positive for at least 8 months regardless of initial COVID-19 disease severity. The presence of anti-spike IgG antibodies is associated with a substantially reduced risk of reinfection up to 9 months following asymptomatic to mild COVID-19.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , COVID-19/inmunología , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulina G/inmunología , Reinfección , Adulto , Anticuerpos Antivirales/inmunología , Infecciones Asintomáticas , Prueba de Ácido Nucleico para COVID-19 , Prueba Serológica para COVID-19 , Femenino , Humanos , Inmunoglobulina G/sangre , Masculino , Células T de Memoria , Persona de Mediana Edad , Pandemias , SARS-CoV-2 , Factores de Tiempo
18.
PLoS Pathog ; 16(2): e1008297, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32032391

RESUMEN

Hantaviruses, zoonotic RNA viruses belonging to the order Bunyavirales, cause two severe acute diseases in humans, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Hantavirus-infected patients show strong cytotoxic lymphocyte responses and hyperinflammation; however, infected cells remain mostly intact. Hantaviruses were recently shown to inhibit apoptosis in infected cells. By inhibiting granzyme B- and TRAIL-mediated apoptosis, hantaviruses specifically and efficiently inhibit cytotoxic lymphocyte-mediated killing of infected cells. Hantaviruses also strongly inhibit apoptosis triggered intrinsically; i.e., initiated through intracellular activation pathways different from those used by cytotoxic lymphocytes. However, insights into the latter mechanisms are currently largely unknown. Here, we dissected the mechanism behind how hantavirus infection, represented by the HFRS-causing Hantaan virus and the HPS-causing Andes virus, results in resistance to staurosporine-induced apoptosis. Less active caspase-8 and caspase-9, and consequently less active caspase-3, was observed in infected compared to uninfected staurosporine-exposed cells. While staurosporine-exposed uninfected cells showed massive release of pro-apoptotic cytochrome C into the cytosol, this was not observed in infected cells. Further, hantaviruses prevented activation of BAX and mitochondrial outer membrane permeabilization (MOMP). In parallel, a significant increase in levels of the pro-survival factor BCL-2 was observed in hantavirus-infected cells. Importantly, direct inhibition of BCL-2 by the inhibitor ABT-737, as well as silencing of BCL-2 by siRNA, resulted in apoptosis in staurosporine-exposed hantavirus-infected cells. Overall, we here provide a tentative mechanism by which hantaviruses protect infected cells from intrinsic apoptosis at the mitochondrial level by inducing an increased expression of the pro-survival factor BCL-2, thereby preventing MOMPs and subsequent activation of caspases. The variety of mechanisms used by hantaviruses to ensure survival of infected cells likely contribute to the persistent infection in natural hosts and may play a role in immunopathogenesis of HFRS and HPS in humans.


Asunto(s)
Apoptosis , Fiebre Hemorrágica con Síndrome Renal/metabolismo , Potencial de la Membrana Mitocondrial , Membranas Mitocondriales/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Regulación hacia Arriba , Células A549 , Caspasas/genética , Caspasas/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Fiebre Hemorrágica con Síndrome Renal/patología , Humanos , Membranas Mitocondriales/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
19.
Scand J Immunol ; : e13195, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35652743

RESUMEN

The Karolinska KI/K COVID-19 Immune Atlas project was conceptualized in March 2020 as a part of the academic research response to the developing SARS-CoV-2 pandemic. The aim was to rapidly provide a curated dataset covering the acute immune response towards SARS-CoV-2 infection in humans, as it occurred during the first wave. The Immune Atlas was built as an open resource for broad research and educational purposes. It contains a presentation of the response evoked by different immune and inflammatory cells in defined naïve patient-groups as they presented with moderate and severe COVID-19 disease. The present Resource Article describes how the Karolinska KI/K COVID-19 Immune Atlas allow scientists, students, and other interested parties to freely explore the nature of the immune response towards human SARS-CoV-2 infection in an online setting.

20.
J Immunol ; 205(9): 2437-2446, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32878912

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in late 2019 and has since become a global pandemic. Pathogen-specific Abs are typically a major predictor of protective immunity, yet human B cell and Ab responses during COVID-19 are not fully understood. In this study, we analyzed Ab-secreting cell and Ab responses in 20 hospitalized COVID-19 patients. The patients exhibited typical symptoms of COVID-19 and presented with reduced lymphocyte numbers and increased T cell and B cell activation. Importantly, we detected an expansion of SARS-CoV-2 nucleocapsid protein-specific Ab-secreting cells in all 20 COVID-19 patients using a multicolor FluoroSpot Assay. Out of the 20 patients, 16 had developed SARS-CoV-2-neutralizing Abs by the time of inclusion in the study. SARS-CoV-2-specific IgA, IgG, and IgM Ab levels positively correlated with SARS-CoV-2-neutralizing Ab titers, suggesting that SARS-CoV-2-specific Ab levels may reflect the titers of neutralizing Abs in COVID-19 patients during the acute phase of infection. Last, we showed that IL-6 and C-reactive protein serum concentrations were higher in patients who were hospitalized for longer, supporting the recent observations that IL-6 and C-reactive protein could be used as markers for COVID-19 severity. Altogether, this study constitutes a detailed description of clinical and immunological parameters in 20 COVID-19 patients, with a focus on B cell and Ab responses, and describes tools to study immune responses to SARS-CoV-2 infection and vaccination.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/inmunología , Hospitalización , Neumonía Viral/epidemiología , Neumonía Viral/inmunología , Adulto , Anciano , Biomarcadores/sangre , Proteína C-Reactiva/análisis , COVID-19 , Estudios de Cohortes , Infecciones por Coronavirus/virología , Proteínas de la Nucleocápside de Coronavirus , Femenino , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Interleucina-6/sangre , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Proteínas de la Nucleocápside/inmunología , Pandemias , Fosfoproteínas , Neumonía Viral/virología , SARS-CoV-2 , Suecia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA