Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Ecol Lett ; 23(1): 119-128, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31650676

RESUMEN

Plant diversity is critical to the functioning of ecosystems, potentially mediated in part by interactions with soil biota. Here, we characterised multiple groups of soil biota across a plant diversity gradient in a long-term experiment. We then subjected soil samples taken along this gradient to drought, freezing and a mechanical disturbance to test how plant diversity affects the responses of soil biota and growth of a focal plant to these disturbances. High plant diversity resulted in soils that were dominated by fungi and associated soil biota, including increased arbuscular mycorrhizal fungi and reduced plant-feeding nematodes. Disturbance effects on the soil biota were reduced when plant diversity was high, resulting in higher growth of the focal plant in all but the frozen soils. These results highlight the importance of plant diversity for soil communities and their resistance to disturbance, with potential feedback effects on plant productivity.


Asunto(s)
Ecosistema , Suelo , Biota , Plantas , Microbiología del Suelo
2.
New Phytol ; 222(1): 91-96, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30451287

RESUMEN

Contents Summary 91 I. Introduction 91 II. Primary PSF mechanisms 91 III. Factors mediating the mechanisms of PSF 93 IV. Conclusions and future directions 94 Acknowledgements 95 Author contributions 95 References 95 SUMMARY: Plant-soil feedback (PSF) occurs when plants alter soil properties that influence the performance of seedlings, with consequent effects on plant populations and communities. Many processes influence PSF, including changes in nutrient availability and the accumulation of natural enemies, mutualists or secondary chemicals. Typically, these mechanisms are investigated in isolation, yet no single mechanism is likely to be completely responsible for PSF as these processes can interact. Further, the outcome depends on which resources are limiting and the other plants and soil biota in the surrounding environment. As such, understanding the mechanisms of PSF and their role within plant communities requires quantification of the interactions among the processes influencing PSF and the associated abiotic and biotic contexts.


Asunto(s)
Retroalimentación , Plantas/metabolismo , Suelo , Modelos Biológicos
3.
Ecol Lett ; 21(8): 1268-1281, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29896848

RESUMEN

Plants interact simultaneously with each other and with soil biota, yet the relative importance of competition vs. plant-soil feedback (PSF) on plant performance is poorly understood. Using a meta-analysis of 38 published studies and 150 plant species, we show that effects of interspecific competition (either growing plants with a competitor or singly, or comparing inter- vs. intraspecific competition) and PSF (comparing home vs. away soil, live vs. sterile soil, or control vs. fungicide-treated soil) depended on treatments but were predominantly negative, broadly comparable in magnitude, and additive or synergistic. Stronger competitors experienced more negative PSF than weaker competitors when controlling for density (inter- to intraspecific competition), suggesting that PSF could prevent competitive dominance and promote coexistence. When competition was measured against plants growing singly, the strength of competition overwhelmed PSF, indicating that the relative importance of PSF may depend not only on neighbour identity but also density. We evaluate how competition and PSFs might interact across resource gradients; PSF will likely strengthen competitive interactions in high resource environments and enhance facilitative interactions in low-resource environments. Finally, we provide a framework for filling key knowledge gaps and advancing our understanding of how these biotic interactions influence community structure.


Asunto(s)
Plantas , Microbiología del Suelo , Suelo , Biota , Retroalimentación
4.
New Phytol ; 214(3): 1330-1337, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28186629

RESUMEN

Although arbuscular mycorrhizal (AM) fungi are obligate symbionts that can influence plant growth, the magnitude and direction of these effects are highly variable within fungal genera and even among isolates within species, as well as among plant taxa. To determine whether variability in AM fungal morphology and growth is correlated with AM fungal effects on plant growth, we established a common garden experiment with 56 AM fungal isolates comprising 17 genera and six families growing with three plant host species. Arbuscular mycorrhizal fungal morphology and growth was highly conserved among isolates of the same species and among species within a family. By contrast, plant growth response to fungal inoculation was highly variable, with the majority of variation occurring among different isolates of the same AM fungal species. Our findings show that host performance cannot be predicted from AM fungal morphology and growth traits. Divergent effects on plant growth among isolates within an AM fungal species may be caused by coevolution between co-occurring fungal and plant populations.


Asunto(s)
Evolución Biológica , Glomeromycota/citología , Micorrizas/fisiología , Desarrollo de la Planta , Plantas/microbiología , Simbiosis , Filogenia , Carácter Cuantitativo Heredable , Especificidad de la Especie
5.
New Phytol ; 215(4): 1314-1332, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28649741

RESUMEN

Contents 1314 I. 1315 II. 1316 III. 1322 IV. 1323 V. 1325 VI. 1326 VII. 1326 VIII. 1327 1328 References 1328 SUMMARY: Invasions of alien plants are typically studied as invasions of individual species, yet interactions between plants and symbiotic fungi (mutualists and potential pathogens) affect plant survival, physiological traits, and reproduction and hence invasion success. Studies show that plant-fungal associations are frequently key drivers of plant invasion success and impact, but clear conceptual frameworks and integration across studies are needed to move beyond a series of case studies towards a more predictive understanding. Here, we consider linked plant-fungal invasions from the perspective of plant and fungal origin, simplified to the least complex representations or 'motifs'. By characterizing these interaction motifs, parallels in invasion processes between pathogen and mutualist fungi become clear, although the outcomes are often opposite in effect. These interaction motifs provide hypotheses for fungal-driven dynamics behind observed plant invasion trajectories. In some situations, the effects of plant-fungal interactions are inconsistent or negligible. Variability in when and where different interaction motifs matter may be driven by specificity in the plant-fungal interaction, the size of the effect of the symbiosis (negative to positive) on plants and the dependence (obligate to facultative) of the plant-fungal interaction. Linked plant-fungal invasions can transform communities and ecosystem function, with potential for persistent legacies preventing ecosystem restoration.


Asunto(s)
Hongos/patogenicidad , Plantas/microbiología , Ecosistema , Hongos/fisiología , Especificidad del Huésped , Interacciones Huésped-Patógeno/fisiología , Simbiosis
6.
Mycorrhiza ; 27(3): 273-282, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27909817

RESUMEN

Despite the importance of arbuscular mycorrhizal (AM) fungi within terrestrial ecosystems, we know little about how natural AM fungal communities are structured. To date, the majority of studies examining AM fungal community diversity have focused on single habitats with similar environmental conditions, with relatively few studies having assessed the diversity of AM fungi over large-scale environmental gradients. In this study, we characterized AM fungal communities in the soil along a high-elevation gradient in the North American Rocky Mountains. We focused on phylogenetic patterns of AM fungal communities to gain insight into how AM fungal communities are naturally assembled. We found that alpine AM fungal communities had lower phylogenetic diversity relative to lower elevation communities, as well as being more heterogeneous in composition than either treeline or subalpine communities. AM fungal communities were phylogenetically clustered at all elevations sampled, suggesting that environmental filtering, either selection by host plants or fungal niches, is the primary ecological process structuring communities along the gradient.


Asunto(s)
Micorrizas/clasificación , Análisis de Secuencia de ARN/métodos , Microbiología del Suelo , Aclimatación , Ecosistema , Micorrizas/genética , Filogenia , Filogeografía , ARN de Hongos/genética , Suelo/química
7.
Microb Ecol ; 72(2): 305-12, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27098176

RESUMEN

Archaea are widespread and abundant in soils, oceans, or human and animal gastrointestinal (GI) tracts. However, very little is known about the presence of Archaea in indoor environments and factors that can regulate their abundances. Using a quantitative PCR approach, and targeting the archaeal and bacterial 16S rRNA genes in floor dust samples, we found that Archaea are a common part of the indoor microbiota, 5.01 ± 0.14 (log 16S rRNA gene copies/g dust, mean ± SE) in bedrooms and 5.58 ± 0.13 in common rooms, such as living rooms. Their abundance, however, was lower than bacteria: 9.20 ± 0.32 and 9.17 ± 0.32 in bedrooms and common rooms, respectively. In addition, by measuring a broad array of environmental factors, we obtained preliminary insights into how the abundance of total archaeal 16S rRNA gene copies in indoor environment would be associated with building characteristics and occupants' activities. Based on the results, Archaea are not equally distributed within houses, and the areas with greater input of outdoor microbiome and higher traffic and material heterogeneity tend to have a higher abundance of Archaea. Nevertheless, more research is needed to better understand causes and consequences of this microbial group in indoor environments.


Asunto(s)
Archaea/aislamiento & purificación , Microbiología Ambiental , Vivienda , Archaea/clasificación , ADN de Archaea/genética , Humanos , Microbiota , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
8.
Ecol Lett ; 17(12): 1613-21, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25328022

RESUMEN

We examined whether plant-soil feedback and plant-field abundance were phylogenetically conserved. For 57 co-occurring native and exotic plant species from an old field in Canada, we collected a data set on the effects of three soil biota treatments on plant growth: net whole-soil feedback (combined effects of mutualists and antagonists), feedback with arbuscular mycorrhizal fungi (AMF) collected from soils of conspecific plants, and feedback with Glomus etunicatum, a dominant mycorrhizal fungus. We found phylogenetic signal in both net whole-soil feedback and feedback with AMF of conspecifics; conservatism was especially strong among native plants but absent among exotics. The abundance of plants in the field was also conserved, a pattern underlain by shared plant responses to soil biota. We conclude that soil biota influence the abundance of close plant relatives in nature.


Asunto(s)
Ecosistema , Micorrizas/fisiología , Filogenia , Plantas , Microbiología del Suelo , Retroalimentación Fisiológica , Suelo , Simbiosis
10.
Mycorrhiza ; 24(3): 219-26, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24141906

RESUMEN

Soil factors and host plant identity can both affect the growth and functioning of mycorrhizal fungi. Both components change during primary succession, but it is unknown if their relative importance to mycorrhizas also changes. This research tested how soil type and host plant differences among primary successional stages determine the growth and plant effects of arbuscular mycorrhizal (AM) fungal communities. Mycorrhizal fungal community, plant identity, and soil conditions were manipulated among three stages of a lacustrine sand dune successional series in a fully factorial greenhouse experiment. Late succession AM fungi produced more arbuscules and soil hyphae when grown in late succession soils, although the community was from the same narrow phylogenetic group as those in intermediate succession. AM fungal growth did not differ between host species, and plant growth was similarly unaffected by different AM fungal communities. These results indicate that though ecological filtering and/or adaptation of AM fungi occurs during this primary dune succession, it more strongly reflects matching between fungi and soils, rather than interactions between fungi and host plants. Thus, AM fungal performance during this succession may not depend directly on the sequence of plant community succession.


Asunto(s)
Hongos/crecimiento & desarrollo , Micorrizas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Microbiología del Suelo , Suelo/química , Hifa/crecimiento & desarrollo , Desarrollo de la Planta , Raíces de Plantas/crecimiento & desarrollo , Plantas/microbiología
11.
Trends Plant Sci ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38821841

RESUMEN

Crop diversification practices offer numerous synergistic benefits. So far, research has traditionally been confined to exploring isolated, unidirectional single-process interactions among plants, soil, and microorganisms. Here, we present a novel and systematic perspective, unveiling the intricate web of plant-soil-microbiome interactions that trigger cascading effects. Applying the principles of cascading interactions can be an alternative way to overcome soil obstacles such as soil compaction and soil pathogen pressure. Finally, we introduce a research framework comprising the design of diversified cropping systems by including commercial varieties and crops with resource-efficient traits, the exploration of cascading effects, and the innovation of field management. We propose that this provides theoretical and methodological insights that can reveal new mechanisms by which crop diversity increases productivity.

12.
ISME J ; 16(11): 2467-2478, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35871251

RESUMEN

Soil biota can determine plant invasiveness, yet biogeographical comparisons of microbial community composition and function across ranges are rare. We compared interactions between Conyza canadensis, a global plant invader, and arbuscular mycorrhizal (AM) fungi in 17 plant populations in each native and non-native range spanning similar climate and soil fertility gradients. We then grew seedlings in the greenhouse inoculated with AM fungi from the native range. In the field, Conyza plants were larger, more fecund, and associated with a richer community of more closely related AM fungal taxa in the non-native range. Fungal taxa that were more abundant in the non-native range also correlated positively with plant biomass, whereas taxa that were more abundant in the native range appeared parasitic. These patterns persisted when populations from both ranges were grown together in a greenhouse; non-native populations cultured a richer and more diverse AM fungal community and selected AM fungi that appeared to be more mutualistic. Our results provide experimental support for evolution toward enhanced mutualism in non-native ranges. Such novel relationships and the rapid evolution of mutualisms may contribute to the disproportionate abundance and impact of some non-native plant species.


Asunto(s)
Micobioma , Micorrizas , Raíces de Plantas , Plantas , Suelo , Microbiología del Suelo , Simbiosis
13.
Ecol Lett ; 14(1): 36-41, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21073641

RESUMEN

One robust result from many small-scale experiments has been that plant community productivity often increases with increasing plant diversity. Most frequently, resource-based or competitive interactions are thought to drive this positive diversity-productivity relationship. Here, we ask whether suppression of plant productivity by soil fungal pathogens might also drive a positive diversity-productivity relationship. We created plant assemblages that varied in diversity and crossed this with a ± soil fungicide treatment. In control (non-fungicide treated) assemblages there was a strong positive relationship between plant diversity and above-ground plant biomass. However, in fungicide-treated assemblages this relationship disappeared. This occurred because fungicide increased plant production by an average of 141% at the lower ends of diversity but boosted production by an average of only 33% at the higher ends of diversity, essentially flattening the diversity-productivity curve. These results suggest that soil pathogens might be a heretofore unappreciated driver of diversity-productivity relationships.


Asunto(s)
Biodiversidad , Hongos/fisiología , Fenómenos Fisiológicos de las Plantas , Microbiología del Suelo , Biomasa , Interacciones Huésped-Patógeno
14.
Proc Biol Sci ; 278(1720): 2939-45, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21325332

RESUMEN

Whether dominance drives species loss can depend on the power of conspecific self-limitation as dominant populations expand; these limitations can stabilize competitive imbalances that might otherwise cause displacement. We quantify the relative strength of conspecific and heterospecific soil feedbacks in an exotic-dominated savannah, using greenhouse trials and field surveys to test whether dominants are less self-suppressed, highly suppressive of others or both. Soil feedbacks can impact plant abundance, including invasion, but their implications for coexistence in invader-dominated systems are unclear. We found that conspecific feedbacks were significantly more negative than heterospecific ones for all species including the dominant invaders; even the rarest natives performed significantly better in the soils of other species. The strength of these negative feedbacks, however, was approximately 50 per cent stronger for natives and matched their field abundance--the most self-limited natives were rare and narrowly distributed. These results suggest that exotics dominate by interacting with natives carrying heavier conspecific feedback burdens, without cultivating either negative heterospecific effects that suppress natives or positive ones that accelerate their own expansion. These feedbacks, however, could contribute to coexistence because all species were self-limited in their own soils. Although the net impact of this feedback stabilization will probably interact with other factors (e.g. herbivory), soil feedbacks may thus contribute to invader dominance without necessarily being detrimental to species richness.


Asunto(s)
Ecosistema , Plantas/clasificación , Animales , Colombia Británica , Especies Introducidas , Densidad de Población , Suelo
15.
New Phytol ; 189(2): 507-14, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20880038

RESUMEN

A considerable amount of phenotypic, genetic and symbiotic functional variability has been documented in arbuscular mycorrhizal fungi (AMF). However, little is known about whether distinct AMF ecotypes have evolved within their geographic range. We tested the hypothesis that AMF growing at temperatures closer to those prevalent within their origin would benefit their host and grow more than isolates distant from their native conditions. For each of six AMF species, we chose pairs of isolates that originated from distant areas with contrasting climates. Each isolate was grown in association with two grass species of different thermal optima at two temperature settings. Thus, we also tested whether AMF from different climatic origins were dependent on the thermal adaptation of the host plant species or to temperature per se. Although fungal growth was not directly affected by temperature, we found that AMF isolates originating from contrasting climates consistently and differentially altered plant growth. Our results suggest that AMF from contrasting climates have altered symbiotic function, thus linking an abiotic factor to ecotypic differentiation of putatively important symbionts.


Asunto(s)
Biodiversidad , Clima , Cynodon/microbiología , Glomeromycota/fisiología , Micorrizas/fisiología , Poa/microbiología , Biomasa , Recuento de Colonia Microbiana , Cynodon/crecimiento & desarrollo , Glomeromycota/aislamiento & purificación , Micorrizas/aislamiento & purificación , Fenotipo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/microbiología , Poa/crecimiento & desarrollo
16.
Ecology ; 92(5): 1027-35, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21661564

RESUMEN

The net effects of soil biota on exotic invaders can be variable, in part, because net effects are produced by many interacting mutualists and antagonists. Here we compared mutualistic and antagonistic biota in soils collected in the native, expanded, and invasive range of the black locust tree, Robinia pseudoacacia. Robinia formed nodules in all soils with a broad phylogenetic range of N-fixing bacteria, and leaf N did not differ among the different sources of soil. This suggests that the global expansion of Robinia was not limited by the lack of appropriate mutualistic N-fixers. Arbuscular mycorrhizal fungi (AMF) from the native range stimulated stronger positive feedbacks than AMF from the expanded or invasive ranges, a biogeographic difference not described previously for invasive plants. Pythium taxa collected from soil in the native range were not more pathogenic than those from other ranges; however, feedbacks produced by the total soil biota were more negative from soils from the native range than from the other ranges, overriding the effects of AMF. This suggests that escape from other pathogens in the soil or the net negative effects of the whole soil community may contribute to superior performance in invaded regions. Our results suggest that important regional evolutionary relationships may occur among plants and soil biota, and that net effects of soil biota may affect invasion, but in ways that are not easily explained by studying isolated components of the soil biota.


Asunto(s)
Especies Introducidas , Micorrizas/fisiología , Robinia/fisiología , Microbiología del Suelo , Demografía , Micorrizas/genética , Nitrógeno , Filogenia , Enfermedades de las Plantas/microbiología , Nodulación de la Raíz de la Planta , Pythium/fisiología
17.
Ecology ; 92(2): 296-303, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21618909

RESUMEN

Ecosystem productivity commonly increases asymptotically with plant species diversity, and determining the mechanisms responsible for this well-known pattern is essential to predict potential changes in ecosystem productivity with ongoing species loss. Previous studies attributed the asymptotic diversity-productivity pattern to plant competition and differential resource use (e.g., niche complementarity). Using an analytical model and a series of experiments, we demonstrate theoretically and empirically that host-specific soil microbes can be major determinants of the diversity-productivity relationship in grasslands. In the presence of soil microbes, plant disease decreased with increasing diversity, and productivity increased nearly 500%, primarily because of the strong effect of density-dependent disease on productivity at low diversity. Correspondingly, disease was higher in plants grown in conspecific-trained soils than heterospecific-trained soils (demonstrating host-specificity), and productivity increased and host-specific disease decreased with increasing community diversity, suggesting that disease was the primary cause of reduced productivity in species-poor treatments. In sterilized, microbe-free soils, the increase in productivity with increasing plant species number was markedly lower than the increase measured in the presence of soil microbes, suggesting that niche complementarity was a weaker determinant of the diversity-productivity relationship. Our results demonstrate that soil microbes play an integral role as determinants of the diversity-productivity relationship.


Asunto(s)
Biodiversidad , Desarrollo de la Planta , Microbiología del Suelo , Modelos Biológicos , Plantas/clasificación
18.
Nature ; 433(7026): 621-4, 2005 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-15703744

RESUMEN

Attempts to understand the ecological effect of increasing atmospheric CO2 concentration, [CO2], usually involve exposing today's ecosystems to expected future [CO2] levels. However, a major assumption of these approaches has not been tested--that exposing ecosystems to a single-step increase in [CO2] will yield similar responses to those of a gradual increase over several decades. We tested this assumption on a mycorrhizal fungal community over a period of six years. [CO2] was either increased abruptly, as is typical of most [CO2] experiments, or more gradually over 21 generations. The two approaches resulted in different structural and functional community responses to increased [CO2]. Some fungi were sensitive to the carbon pulse of the abrupt [CO2] treatment. This resulted in an immediate decline in fungal species richness and a significant change in mycorrhizal functioning. The magnitude of changes in fungal diversity and functioning in response to gradually increasing [CO2] was smaller, and not significantly different to those with ambient [CO2]. Our results suggest that studies may overestimate some community responses to increasing [CO2] because biota may be sensitive to ecosystem changes that occur as a result of abrupt increases.


Asunto(s)
Atmósfera/química , Bromus/metabolismo , Bromus/microbiología , Dióxido de Carbono/metabolismo , Ecosistema , Suelo/análisis , Análisis de Varianza , Biomasa , Dióxido de Carbono/análisis , Hongos/metabolismo , Ontario
19.
Mycorrhiza ; 21(2): 91-6, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20422233

RESUMEN

Urban environments are highly disturbed and fragmented ecosystems that commonly have lower mycorrhizal fungal species richness and diversity compared to rural or natural ecosystems. In this study, we assessed whether the mycorrhizal status and colonization of trees are influenced by the overall environment (rural vs. urban) they are growing in. Soil cores were collected from the rhizosphere of trees growing in urban and rural environments around southern Ontario. Roots were extracted from the soil cores to determine whether the trees were colonized by arbuscular mycorrhizal fungi, ectomycorrhizal fungi, or both, and to quantify the percent colonization of each type of mycorrhizal fungi. All 26 tree species were colonized by arbuscular mycorrhizal fungi, and seven tree species were dually colonized by arbuscular mycorrhizal and ectomycorrhizal fungi. Overall, arbuscular mycorrhizal and ectomycorrhizal fungal colonization was significantly (p < 0.001) lower in trees growing in urban compared to rural environments. It is not clear what 'urban' factors are responsible for the reduction in mycorrhizal fungal colonization; more research is needed to determine whether inoculating urban trees with mycorrhizal fungi would increase colonization levels and growth of the trees.


Asunto(s)
Ambiente , Micorrizas/clasificación , Micorrizas/crecimiento & desarrollo , Simbiosis , Árboles/microbiología , Ecología , Ecosistema , Ontario , Raíces de Plantas/microbiología , Árboles/clasificación
20.
Ecol Evol ; 11(4): 1756-1768, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33614002

RESUMEN

Plant-soil feedbacks (PSFs) have been shown to strongly affect plant performance under controlled conditions, and PSFs are thought to have far reaching consequences for plant population dynamics and the structuring of plant communities. However, thus far the relationship between PSF and plant species abundance in the field is not consistent. Here, we synthesize PSF experiments from tropical forests to semiarid grasslands, and test for a positive relationship between plant abundance in the field and PSFs estimated from controlled bioassays. We meta-analyzed results from 22 PSF experiments and found an overall positive correlation (0.12 ≤  r ¯  ≤ 0.32) between plant abundance in the field and PSFs across plant functional types (herbaceous and woody plants) but also variation by plant functional type. Thus, our analysis provides quantitative support that plant abundance has a general albeit weak positive relationship with PSFs across ecosystems. Overall, our results suggest that harmful soil biota tend to accumulate around and disproportionately impact species that are rare. However, data for the herbaceous species, which are most common in the literature, had no significant abundance-PSFs relationship. Therefore, we conclude that further work is needed within and across biomes, succession stages and plant types, both under controlled and field conditions, while separating PSF effects from other drivers (e.g., herbivory, competition, disturbance) of plant abundance to tease apart the role of soil biota in causing patterns of plant rarity versus commonness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA