RESUMEN
BACKGROUND: After infection with SARS-CoV-2 a relevant proportion of patients complains about persisting symptoms, a condition termed Post-COVID-19-syndrome (PC19S). So far, possible treatments are under investigation. Among others, neurotropic vitamins and anti-inflammatory substances are potential options. Thus, the PreVitaCOV trial aims to assess feasibility, safety, and effectiveness of treating patients in primary care with prednisolone and/or vitamin B1, B6 and B12. METHODS: The phase IIIb, multi-centre randomised, double-blind, and placebo-controlled PreVitaCOV trial has a factorial design and is planned as a two-phase approach. The pilot phase assessed feasibility and safety and was transformed into a confirmatory phase to evaluate effectiveness since feasibility was proven. Adult patients with PC19S after a documented SARS-CoV-2 infection at least 12 weeks ago are randomly assigned to 4 parallel treatments: prednisolone 20 mg for five days followed by 5 mg for 23 days (trial drug 1), B vitamins (B1 (100 mg OD), B6 (50 mg OD), and B12 (500 µg OD)) for 28 days (trial drug 2), trial drugs 1 and 2, or placebo. The primary outcome of the pilot phase was defined as the retention rate of the first 100 patients. Values of ≥ 85% were considered as confirmation of feasibility, this criterion was even surpassed by a retention rate of 98%. After transformation, the confirmatory phase proceeds by enrolling 240 additional patients. The primary outcome for the study is the change of symptom severity from baseline to day 28 as assessed by a tailored Patient Reported Outcomes Measurement Information System (PROMIS) total score referring to five symptom domains known to be typical for PC19S (fatigue, dyspnoea, cognition, anxiety, depression). The confirmatory trial is considered positive if superiority of any treatment is demonstrated over placebo operationalised by an improvement of at least 3 points on the PROMIS total score (t-score). DISCUSSION: The PreVitaCOV trial may contribute to the understanding of therapeutic approaches in PC19S in a primary care context. TRIAL REGISTRATION: EudraCT: 2022-001041-20. DRKS: DRKS00029617. CLINICALTRIALS: gov: F001AM02222_1 (registered: 05 Dec 2022).
Asunto(s)
COVID-19 , Tiamina , Adulto , Humanos , Prednisolona/uso terapéutico , Estudios de Factibilidad , SARS-CoV-2 , Vitaminas , Método Doble Ciego , Síndrome , Atención Primaria de Salud , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto , Ensayos Clínicos Fase III como AsuntoRESUMEN
An in-line holographic particle counter concept is presented and validated where multiple micrometer sized particles are detected in a three dimensional sampling volume, all at once. The proposed PIU is capable of detecting holograms of particles which sizes are in the lower µ m- range. The detection and counting principle is based on common image processing techniques using a customized HT with a result directly relating to the particle number concentration in the recorded sampling volume. The proposed counting unit is mounted ontop of a CNM for comparison with a commercial TSI-3775 CPC. The concept does not only allow for a precise in-situ determination of low particle number concentrations but also enables easy upscaling to higher particle densities (e.g., > 30 . 000 # c c m ) through its linear expandability and option of cascading. The impact of coincidence at higher particle densities is shown and two coincidence correction approaches are presented where, at last, its analogy to the coincidence correction methods used in state-of-the-art CPCs is identified.
RESUMEN
The development of simple gas sensing concepts is still of great interest for science and technology. The demands on an ideal device would be a single-step fabrication method providing a device which is sensitive, analyte-selective, quantitative, and reversible without special operating/reformation conditions such as high temperatures or special environments. In this study we demonstrate a new gas sensing concept based on a nanosized PtC metal-matrix system fabricated in a single step via focused electron beam induced deposition (FEBID). The sensors react selectively on polar H2O molecules quantitatively and reversibly without any special reformation conditions after detection events, whereas non-polar species (O2, CO2, N2) produce no response. The key elements are isolated Pt nanograins (2-3 nm) which are embedded in a dielectric carbon matrix. The electrical transport in such materials is based on tunneling effects in the correlated variable range hopping regime, where the dielectric carbon matrix screens the electric field between the particles, which governs the final conductivity. The specific change of these dielectric properties by the physisorption of polar gas molecules (H2O) can change the tunneling probability and thus the overall conductivity, allowing their application as a simple and straightforward sensing concept.
RESUMEN
Unicompartmental knee arthroplasty (UKA) in isolated medial or lateral osteoarthritis leads to good clinical results. However, revision rates are higher in comparison to total knee arthroplasty (TKA). One reason is suboptimal fitting of conventional off-the-shelf prostheses, and major overhang of the tibial component over the bone has been reported in up to 20% of cases. In this retrospective study, a total of 537 patient-specific UKAs (507 medial prostheses and 30 lateral prostheses) that had been implanted in 3 centers over a period of 10 years were analyzed for survival, with a minimal follow-up of 1 year (range 12 to 129 months). Furthermore, fitting of the UKAs was analyzed on postoperative X-rays, and tibial overhang was quantified. A total of 512 prostheses were available for follow-up (95.3%). Overall survival rate (medial and lateral) of the prostheses after 5 years was 96%. The 30 lateral UKAs showed a survival rate of 100% at 5 years. The tibial overhang of the prosthesis was smaller than 1 mm in 99% of cases. In comparison to the reported results in the literature, our data suggest that the patient-specific implant design used in this study is associated with an excellent midterm survival rate, particularly in the lateral knee compartment, and confirms excellent fitting.
RESUMEN
An ion-sensitive electrolyte-gated organic field-effect transistor for selective and reversible detection of sodium (Na(+) ) down to 10(-6) M is presented. The inherent low voltage - high current operation of these transistors in combination with a state-of-the-art ion-selective membrane proves to be a novel, versatile modular sensor platform.