Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Am J Hum Genet ; 111(2): 295-308, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38232728

RESUMEN

Infectious agents contribute significantly to the global burden of diseases through both acute infection and their chronic sequelae. We leveraged the UK Biobank to identify genetic loci that influence humoral immune response to multiple infections. From 45 genome-wide association studies in 9,611 participants from UK Biobank, we identified NFKB1 as a locus associated with quantitative antibody responses to multiple pathogens, including those from the herpes, retro-, and polyoma-virus families. An insertion-deletion variant thought to affect NFKB1 expression (rs28362491), was mapped as the likely causal variant and could play a key role in regulation of the immune response. Using 121 infection- and inflammation-related traits in 487,297 UK Biobank participants, we show that the deletion allele was associated with an increased risk of infection from diverse pathogens but had a protective effect against allergic disease. We propose that altered expression of NFKB1, as a result of the deletion, modulates hematopoietic pathways and likely impacts cell survival, antibody production, and inflammation. Taken together, we show that disruptions to the tightly regulated immune processes may tip the balance between exacerbated immune responses and allergy, or increased risk of infection and impaired resolution of inflammation.


Asunto(s)
Predisposición Genética a la Enfermedad , Hipersensibilidad , Inflamación , Humanos , Estudio de Asociación del Genoma Completo , Hipersensibilidad/genética , Inflamación/genética , Subunidad p50 de NF-kappa B/genética , Biobanco del Reino Unido
2.
Thorax ; 79(6): 515-523, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38471792

RESUMEN

RATIONALE: Heterogeneity of the host response within sepsis, acute respiratory distress syndrome (ARDS) and more widely critical illness, limits discovery and targeting of immunomodulatory therapies. Clustering approaches using clinical and circulating biomarkers have defined hyper-inflammatory and hypo-inflammatory subphenotypes in ARDS associated with differential treatment response. It is unknown if similar subphenotypes exist in sepsis populations where leucocyte transcriptomic-defined subphenotypes have been reported. OBJECTIVES: We investigated whether inflammatory clusters based on cytokine protein abundance were seen in sepsis, and the relationships with previously described transcriptomic subphenotypes. METHODS: Hierarchical cluster and latent class analysis were applied to an observational study (UK Genomic Advances in Sepsis (GAinS)) (n=124 patients) and two clinical trial datasets (VANISH, n=155 and LeoPARDS, n=484) in which the plasma protein abundance of 65, 21, 11 circulating cytokines, cytokine receptors and regulators were quantified. Clinical features, outcomes, response to trial treatments and assignment to transcriptomic subphenotypes were compared between inflammatory clusters. MEASUREMENTS AND MAIN RESULTS: We identified two (UK GAinS, VANISH) or three (LeoPARDS) inflammatory clusters. A group with high levels of pro-inflammatory and anti-inflammatory cytokines was seen that was associated with worse organ dysfunction and survival. No interaction between inflammatory clusters and trial treatment response was found. We found variable overlap of inflammatory clusters and leucocyte transcriptomic subphenotypes. CONCLUSIONS: These findings demonstrate that differences in response at the level of cytokine biology show clustering related to severity, but not treatment response, and may provide complementary information to transcriptomic sepsis subphenotypes. TRIAL REGISTRATION NUMBER: ISRCTN20769191, ISRCTN12776039.


Asunto(s)
Citocinas , Fenotipo , Sepsis , Transcriptoma , Humanos , Sepsis/sangre , Sepsis/genética , Masculino , Citocinas/sangre , Femenino , Persona de Mediana Edad , Leucocitos/metabolismo , Biomarcadores/sangre , Anciano , Análisis por Conglomerados , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Resultado del Tratamiento
3.
Artículo en Inglés | MEDLINE | ID: mdl-38549844

RESUMEN

The interplay between genetic and environmental factors plays a significant role in interindividual variation in immune and inflammatory responses. The availability of high-throughput low-cost genotyping and next-generation sequencing has revolutionized our ability to identify human genetic variation and understand how this varies within and between populations, and the relationship with disease. In this review, we explore the potential of genomics for patient benefit, specifically in the diagnosis, prognosis and treatment of inflammatory and immune-related diseases. We summarize the knowledge arising from genetic and functional genomic approaches, and the opportunity for personalized medicine. The review covers applications in infectious diseases, rare immunodeficiencies and autoimmune diseases, illustrating advances in diagnosis and understanding risk including use of polygenic risk scores. We further explore the application for patient stratification and drug target prioritization. The review highlights a key challenge to the field arising from the lack of sufficient representation of genetically diverse populations in genomic studies. This currently limits the clinical utility of genetic-based diagnostic and risk-based applications in non-Caucasian populations. We highlight current genome projects, initiatives and biobanks from diverse populations and how this is being used to improve healthcare globally by improving our understanding of genetic susceptibility to diseases and regional pathogens such as malaria and tuberculosis. Future directions and opportunities for personalized medicine and wider application of genomics in health care are described, for the benefit of individual patients and populations worldwide.

4.
STAR Protoc ; 5(1): 102903, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401123

RESUMEN

Here, we present a protocol for lentiviral delivery of CRISPR-Cas9 to human induced pluripotent stem cell (iPSC)-derived macrophages using co-incubation with VPX virus-like particles (VPX-VLPs). We describe steps for producing polybrene and puromycin kill curves, VPX viral production, and VPX-VLP titration by western blotting. We then detail procedures for iPSC macrophage precursor lentiviral transduction and lentiviral CRISPR-Cas9-based knockout in iPSC-derived macrophages. This protocol uses efficient genome-editing techniques to explore macrophage involvement in immune response, chronic inflammation, neurodegenerative disease, and cancer progression. For complete details on the use and execution of this protocol, please refer to Navarro-Guerrero et al.1.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Humanos , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Macrófagos
5.
Cell Genom ; 4(5): 100541, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38663408

RESUMEN

To better understand inter-individual variation in sensitivity of DNA methylation (DNAm) to immune activity, we characterized effects of inflammatory stimuli on primary monocyte DNAm (n = 190). We find that monocyte DNAm is site-dependently sensitive to lipopolysaccharide (LPS), with LPS-induced demethylation occurring following hydroxymethylation. We identify 7,359 high-confidence immune-modulated CpGs (imCpGs) that differ in genomic localization and transcription factor usage according to whether they represent a gain or loss in DNAm. Demethylated imCpGs are profoundly enriched for enhancers and colocalize to genes enriched for disease associations, especially cancer. DNAm is age associated, and we find that 24-h LPS exposure triggers approximately 6 months of gain in epigenetic age, directly linking epigenetic aging with innate immune activity. By integrating LPS-induced changes in DNAm with genetic variation, we identify 234 imCpGs under local genetic control. Exploring shared causal loci between LPS-induced DNAm responses and human disease traits highlights examples of disease-associated loci that modulate imCpG formation.


Asunto(s)
Islas de CpG , Metilación de ADN , Epigénesis Genética , Monocitos , Adulto , Femenino , Humanos , Masculino , Islas de CpG/genética , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Lipopolisacáridos/farmacología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/inmunología , Persona de Mediana Edad , Anciano
6.
Bioinform Adv ; 4(1): vbae085, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911824

RESUMEN

Motivation: Pooled designs for single-cell RNA sequencing, where many cells from distinct samples are processed jointly, offer increased throughput and reduced batch variation. This study describes expression-aware demultiplexing (EAD), a computational method that employs differential co-expression patterns between individuals to demultiplex pooled samples without any extra experimental steps. Results: We use synthetic sample pools and show that the top interindividual differentially co-expressed genes provide a distinct cluster of cells per individual, significantly enriching the regulation of metabolism. Our application of EAD to samples of six isogenic inbred mice demonstrated that controlling genetic and environmental effects can solve interindividual variations related to metabolic pathways. We utilized 30 samples from both sepsis and healthy individuals in six batches to assess the performance of classification approaches. The results indicate that combining genetic and EAD results can enhance the accuracy of assignments (Min. 0.94, Mean 0.98, Max. 1). The results were enhanced by an average of 1.4% when EAD and barcoding techniques were combined (Min. 1.25%, Median 1.33%, Max. 1.74%). Furthermore, we demonstrate that interindividual differential co-expression analysis within the same cell type can be used to identify cells from the same donor in different activation states. By analysing single-nuclei transcriptome profiles from the brain, we demonstrate that our method can be applied to nonimmune cells. Availability and implementation: EAD workflow is available at https://isarnassiri.github.io/scDIV/ as an R package called scDIV (acronym for single-cell RNA-sequencing data demultiplexing using interindividual variations).

7.
Cell Genom ; 4(7): 100587, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38897207

RESUMEN

Sepsis is a clinical syndrome of life-threatening organ dysfunction caused by a dysregulated response to infection, for which disease heterogeneity is a major obstacle to developing targeted treatments. We have previously identified gene-expression-based patient subgroups (sepsis response signatures [SRS]) informative for outcome and underlying pathophysiology. Here, we aimed to investigate the role of genetic variation in determining the host transcriptomic response and to delineate regulatory networks underlying SRS. Using genotyping and RNA-sequencing data on 638 adult sepsis patients, we report 16,049 independent expression (eQTLs) and 32 co-expression module (modQTLs) quantitative trait loci in this disease context. We identified significant interactions between SRS and genotype for 1,578 SNP-gene pairs and combined transcription factor (TF) binding site information (SNP2TFBS) and predicted regulon activity (DoRothEA) to identify candidate upstream regulators. Overall, these approaches identified putative mechanistic links between host genetic variation, cell subtypes, and the individual transcriptomic response to infection.


Asunto(s)
Redes Reguladoras de Genes , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Sepsis , Humanos , Sepsis/genética , Redes Reguladoras de Genes/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Masculino , Femenino , Transcriptoma , Persona de Mediana Edad , Adulto , Genotipo
8.
Lancet Respir Med ; 12(4): 323-336, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408467

RESUMEN

Sepsis is a common and deadly condition. Within the current model of sepsis immunobiology, the framing of dysregulated host immune responses into proinflammatory and immunosuppressive responses for the testing of novel treatments has not resulted in successful immunomodulatory therapies. Thus, the recent focus has been to parse observable heterogeneity into subtypes of sepsis to enable personalised immunomodulation. In this Personal View, we highlight that many fundamental immunological concepts such as resistance, disease tolerance, resilience, resolution, and repair are not incorporated into the current sepsis immunobiology model. The focus for addressing heterogeneity in sepsis should be broadened beyond subtyping to encompass the identification of deterministic molecular networks or dominant mechanisms. We explicitly reframe the dysregulated host immune responses in sepsis as altered homoeostasis with pathological disruption of immune-driven resistance, disease tolerance, resilience, and resolution mechanisms. Our proposal highlights opportunities to identify novel treatment targets and could enable successful immunomodulation in the future.


Asunto(s)
Resistencia a la Enfermedad , Sepsis , Humanos , Inmunomodulación
9.
Sci Transl Med ; 16(750): eadh0185, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838133

RESUMEN

Sepsis, the dysregulated host response to infection causing life-threatening organ dysfunction, is a global health challenge requiring better understanding of pathophysiology and new therapeutic approaches. Here, we applied high-throughput tandem mass spectrometry to delineate the plasma proteome for sepsis and comparator groups (noninfected critical illness, postoperative inflammation, and healthy volunteers) involving 2612 samples (from 1611 patients) and 4553 liquid chromatography-mass spectrometry analyses acquired through a single batch of continuous measurements, with a throughput of 100 samples per day. We show how this scale of data can delineate proteins, pathways, and coexpression modules in sepsis and be integrated with paired leukocyte transcriptomic data (837 samples from n = 649 patients). We mapped the plasma proteomic landscape of the host response in sepsis, including changes over time, and identified features relating to etiology, clinical phenotypes (including organ failures), and severity. This work reveals subphenotypes informative for sepsis response state, disease processes, and outcome; identifies potential biomarkers; and advances opportunities for a precision medicine approach to sepsis.


Asunto(s)
Proteoma , Sepsis , Humanos , Sepsis/sangre , Proteoma/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Proteómica/métodos , Masculino , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análisis , Femenino , Persona de Mediana Edad , Espectrometría de Masas en Tándem/métodos
10.
Lancet Rheumatol ; 2(1): e50-e62, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38258277

RESUMEN

Early identification of genetically validated drug targets can increase the chances of successful late-stage drug development. 81 high-quality genome-wide association studies (GWAS) in diseases related to inflammatory arthritis have been curated into the GWAS catalogue; however, translation of genetic findings from GWAS into rational drug target discovery has been poor. No human genetic findings have completely driven drug development for inflammatory arthritis; however, genetic associations have partly driven the development of abatacept (CTLA-4-Ig) in rheumatoid arthritis and secukinumab (anti-IL-23R) in ankylosing spondylitis. Roadblocks to progress exist, including little knowledge of the genetic architecture and regulatory mechanisms underlying associations, and the need to identify gene regulatory networks and assess target tractability. New opportunities are arising that could maximise the informativeness of GWAS for drug target validation. Genetic variants can be linked to core genes by using functional genomics and then to peripheral genes interconnected to core genes using network information. Moreover, identification of crosstalk between biological pathways might highlight key points for therapeutic intervention.

11.
Preprint en Inglés | PREPRINT-FIOCRUZ | ID: ppf-47927

RESUMEN

A pesquisa aponta que o soro de pessoas previamente infectadas por outras cepas é menos potente contra esta variante viral. O problema é observado de forma marcante entre os indivíduos anteriormente infectados pela variante Gama, identificada originalmente em Manaus e atualmente dominante no Brasil, assim como pela variante Beta, detectada pela primeira vez na África do Sul. Nestes casos, a capacidade de neutralizar a cepa Delta é onze vezes menor. O soro de pessoas vacinadas também tem potência reduzida contra a variante originária da Índia, mas os dados apontam que as vacinas continuam efetivas. A capacidade de neutralizar a cepa é 2,5 vezes menor para o imunizante da Pfizer e 4,3 vezes menor para o da Astrazeneca. Os autores do trabalho ressaltam que os índices são semelhantes aos verificados com as variantes Gama e Alfa ­ que emergiram no Brasil e no Reino Unido, respectivamente. Não há evidência de fuga generalizada da neutralização, diferentemente do registrado com a variante Beta ­ com origem na África do Sul.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA