Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38964327

RESUMEN

Dexamethasone is a life-saving treatment for severe COVID-19, yet its mechanism of action is unknown, and many patients deteriorate or die despite timely treatment initiation. Here, we identify dexamethasone treatment-induced cellular and molecular changes associated with improved survival in COVID-19 patients. We observed a reversal of transcriptional hallmark signatures in monocytes associated with severe COVID-19 and the induction of a monocyte substate characterized by the expression of glucocorticoid-response genes. These molecular responses to dexamethasone were detected in circulating and pulmonary monocytes, and they were directly linked to survival. Monocyte single-cell RNA sequencing (scRNA-seq)-derived signatures were enriched in whole blood transcriptomes of patients with fatal outcome in two independent cohorts, highlighting the potential for identifying non-responders refractory to dexamethasone. Our findings link the effects of dexamethasone to specific immunomodulation and reversal of monocyte dysregulation, and they highlight the potential of single-cell omics for monitoring in vivo target engagement of immunomodulatory drugs and for patient stratification for precision medicine approaches.

2.
Cell ; 184(26): 6243-6261.e27, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34914922

RESUMEN

COVID-19-induced "acute respiratory distress syndrome" (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.


Asunto(s)
COVID-19/patología , COVID-19/virología , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/virología , Macrófagos/patología , Macrófagos/virología , SARS-CoV-2/fisiología , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , COVID-19/diagnóstico por imagen , Comunicación Celular , Estudios de Cohortes , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/genética , Células Madre Mesenquimatosas/patología , Fenotipo , Proteoma/metabolismo , Receptores de Superficie Celular/metabolismo , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/virología , Tomografía Computarizada por Rayos X , Transcripción Genética
3.
Immunity ; 54(11): 2650-2669.e14, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34592166

RESUMEN

Longitudinal analyses of the innate immune system, including the earliest time points, are essential to understand the immunopathogenesis and clinical course of coronavirus disease (COVID-19). Here, we performed a detailed characterization of natural killer (NK) cells in 205 patients (403 samples; days 2 to 41 after symptom onset) from four independent cohorts using single-cell transcriptomics and proteomics together with functional studies. We found elevated interferon (IFN)-α plasma levels in early severe COVD-19 alongside increased NK cell expression of IFN-stimulated genes (ISGs) and genes involved in IFN-α signaling, while upregulation of tumor necrosis factor (TNF)-induced genes was observed in moderate diseases. NK cells exert anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) activity but are functionally impaired in severe COVID-19. Further, NK cell dysfunction may be relevant for the development of fibrotic lung disease in severe COVID-19, as NK cells exhibited impaired anti-fibrotic activity. Our study indicates preferential IFN-α and TNF responses in severe and moderate COVID-19, respectively, and associates a prolonged IFN-α-induced NK cell response with poorer disease outcome.


Asunto(s)
COVID-19/inmunología , Interferón-alfa/inmunología , Células Asesinas Naturales/inmunología , SARS-CoV-2/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Secuencia de Bases , Humanos , Inmunidad Innata/inmunología , Inflamación/inmunología , Interferón-alfa/sangre , Fibrosis Pulmonar/patología , RNA-Seq , Índice de Severidad de la Enfermedad , Transcriptoma/genética , Reino Unido , Estados Unidos
4.
Immunity ; 53(6): 1296-1314.e9, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33296687

RESUMEN

Temporal resolution of cellular features associated with a severe COVID-19 disease trajectory is needed for understanding skewed immune responses and defining predictors of outcome. Here, we performed a longitudinal multi-omics study using a two-center cohort of 14 patients. We analyzed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points. Validation was performed in two independent cohorts of COVID-19 patients. Severe COVID-19 was characterized by an increase of proliferating, metabolically hyperactive plasmablasts. Coinciding with critical illness, we also identified an expansion of interferon-activated circulating megakaryocytes and increased erythropoiesis with features of hypoxic signaling. Megakaryocyte- and erythroid-cell-derived co-expression modules were predictive of fatal disease outcome. The study demonstrates broad cellular effects of SARS-CoV-2 infection beyond adaptive immune cells and provides an entry point toward developing biomarkers and targeted treatments of patients with COVID-19.


Asunto(s)
COVID-19/metabolismo , Células Eritroides/patología , Megacariocitos/fisiología , Células Plasmáticas/fisiología , SARS-CoV-2/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , Circulación Sanguínea , COVID-19/inmunología , Células Cultivadas , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Proteómica , Análisis de Secuencia de ARN , Índice de Severidad de la Enfermedad , Análisis de la Célula Individual
5.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34768885

RESUMEN

Transfer RNA[Ser]Sec carries multiple post-transcriptional modifications. The A37G mutation in tRNA[Ser]Sec abrogates isopentenylation of base 37 and has a profound effect on selenoprotein expression in mice. Patients with a homozygous pathogenic p.R323Q variant in tRNA-isopentenyl-transferase (TRIT1) show a severe neurological disorder, and hence we wondered whether selenoprotein expression was impaired. Patient fibroblasts with the homozygous p.R323Q variant did not show a general decrease in selenoprotein expression. However, recombinant human TRIT1R323Q had significantly diminished activities towards several tRNA substrates in vitro. We thus engineered mice conditionally deficient in Trit1 in hepatocytes and neurons. Mass-spectrometry revealed that hypermodification of U34 to mcm5Um occurs independently of isopentenylation of A37 in tRNA[Ser]Sec. Western blotting and 75Se metabolic labeling showed only moderate effects on selenoprotein levels and 75Se incorporation. A detailed analysis of Trit1-deficient liver using ribosomal profiling demonstrated that UGA/Sec re-coding was moderately affected in Selenop, Txnrd1, and Sephs2, but not in Gpx1. 2'O-methylation of U34 in tRNA[Ser]Sec depends on FTSJ1, but does not affect UGA/Sec re-coding in selenoprotein translation. Taken together, our results show that a lack of isopentenylation of tRNA[Ser]Sec affects UGA/Sec read-through but differs from a A37G mutation.


Asunto(s)
Transferasas Alquil y Aril/genética , ARN de Transferencia/metabolismo , Selenoproteínas/metabolismo , Transferasas Alquil y Aril/metabolismo , Animales , Línea Celular , Cisteína/metabolismo , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Ratones , Neuronas/metabolismo , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Biosíntesis de Proteínas/genética , ARN de Transferencia/genética , Ribosomas/metabolismo , Selenio/metabolismo , Selenocisteína/genética , Selenoproteína P/genética , Selenoproteínas/genética
6.
Front Immunol ; 14: 1275136, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077315

RESUMEN

Introduction: People living with HIV (PLHIV) are characterized by functional reprogramming of innate immune cells even after long-term antiretroviral therapy (ART). In order to assess technical feasibility of omics technologies for application to larger cohorts, we compared multiple omics data layers. Methods: Bulk and single-cell transcriptomics, flow cytometry, proteomics, chromatin landscape analysis by ATAC-seq as well as ex vivo drug stimulation were performed in a small number of blood samples derived from PLHIV and healthy controls from the 200-HIV cohort study. Results: Single-cell RNA-seq analysis revealed that most immune cells in peripheral blood of PLHIV are altered in their transcriptomes and that a specific functional monocyte state previously described in acute HIV infection is still existing in PLHIV while other monocyte cell states are only occurring acute infection. Further, a reverse transcriptome approach on a rather small number of PLHIV was sufficient to identify drug candidates for reversing the transcriptional phenotype of monocytes in PLHIV. Discussion: These scientific findings and technological advancements for clinical application of single-cell transcriptomics form the basis for the larger 2000-HIV multicenter cohort study on PLHIV, for which a combination of bulk and single-cell transcriptomics will be included as the leading technology to determine disease endotypes in PLHIV and to predict disease trajectories and outcomes.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Humanos , Fármacos Anti-VIH/uso terapéutico , Estudios de Cohortes , Monocitos , Estudios Multicéntricos como Asunto
7.
Front Immunol ; 13: 917232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35979364

RESUMEN

Despite its high prevalence, the cellular and molecular mechanisms of chronic obstructive pulmonary disease (COPD) are far from being understood. Here, we determine disease-related changes in cellular and molecular compositions within the alveolar space and peripheral blood of a cohort of COPD patients and controls. Myeloid cells were the largest cellular compartment in the alveolar space with invading monocytes and proliferating macrophages elevated in COPD. Modeling cell-to-cell communication, signaling pathway usage, and transcription factor binding predicts TGF-ß1 to be a major upstream regulator of transcriptional changes in alveolar macrophages of COPD patients. Functionally, macrophages in COPD showed reduced antigen presentation capacity, accumulation of cholesteryl ester, reduced cellular chemotaxis, and mitochondrial dysfunction, reminiscent of impaired immune activation.


Asunto(s)
Macrófagos Alveolares , Enfermedad Pulmonar Obstructiva Crónica , Quimiotaxis/fisiología , Humanos , Macrófagos/metabolismo , Monocitos/metabolismo
8.
Front Immunol ; 13: 982746, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605197

RESUMEN

Background: Even during long-term combination antiretroviral therapy (cART), people living with HIV (PLHIV) have a dysregulated immune system, characterized by persistent immune activation, accelerated immune ageing and increased risk of non-AIDS comorbidities. A multi-omics approach is applied to a large cohort of PLHIV to understand pathways underlying these dysregulations in order to identify new biomarkers and novel genetically validated therapeutic drugs targets. Methods: The 2000HIV study is a prospective longitudinal cohort study of PLHIV on cART. In addition, untreated HIV spontaneous controllers were recruited. In-depth multi-omics characterization will be performed, including genomics, epigenomics, transcriptomics, proteomics, metabolomics and metagenomics, functional immunological assays and extensive immunophenotyping. Furthermore, the latent viral reservoir will be assessed through cell associated HIV-1 RNA and DNA, and full-length individual proviral sequencing on a subset. Clinical measurements include an ECG, carotid intima-media thickness and plaque measurement, hepatic steatosis and fibrosis measurement as well as psychological symptoms and recreational drug questionnaires. Additionally, considering the developing pandemic, COVID-19 history and vaccination was recorded. Participants return for a two-year follow-up visit. The 2000HIV study consists of a discovery and validation cohort collected at separate sites to immediately validate any finding in an independent cohort. Results: Overall, 1895 PLHIV from four sites were included for analysis, 1559 in the discovery and 336 in the validation cohort. The study population was representative of a Western European HIV population, including 288 (15.2%) cis-women, 463 (24.4%) non-whites, and 1360 (71.8%) MSM (Men who have Sex with Men). Extreme phenotypes included 114 spontaneous controllers, 81 rapid progressors and 162 immunological non-responders. According to the Framingham score 321 (16.9%) had a cardiovascular risk of >20% in the next 10 years. COVID-19 infection was documented in 234 (12.3%) participants and 474 (25.0%) individuals had received a COVID-19 vaccine. Conclusion: The 2000HIV study established a cohort of 1895 PLHIV that employs multi-omics to discover new biological pathways and biomarkers to unravel non-AIDS comorbidities, extreme phenotypes and the latent viral reservoir that impact the health of PLHIV. The ultimate goal is to contribute to a more personalized approach to the best standard of care and a potential cure for PLHIV.


Asunto(s)
COVID-19 , Infecciones por VIH , Minorías Sexuales y de Género , Masculino , Humanos , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Homosexualidad Masculina , Estudios Prospectivos , Vacunas contra la COVID-19/uso terapéutico , Grosor Intima-Media Carotídeo , Estudios Longitudinales , Multiómica
9.
Front Immunol ; 12: 720109, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367190

RESUMEN

COVID-19 is a contagious viral disease caused by SARS-CoV-2 that led to an ongoing pandemic with massive global health and socioeconomic consequences. The disease is characterized primarily, but not exclusively, by respiratory clinical manifestations ranging from mild common cold symptoms, including cough and fever, to severe respiratory distress and multi-organ failure. Macrophages, a heterogeneous group of yolk-sac derived, tissue-resident mononuclear phagocytes of complex ontogeny present in all mammalian organs, play critical roles in developmental, homeostatic and host defense processes with tissue-dependent plasticity. In case of infection, they are responsible for early pathogen recognition, initiation and resolution of inflammation, as well as repair of tissue damage. Monocytes, bone-marrow derived blood-resident phagocytes, are recruited under pathological conditions such as viral infections to the affected tissue to defend the organism against invading pathogens and to aid in efficient resolution of inflammation. Given their pivotal function in host defense and the potential danger posed by their dysregulated hyperinflammation, understanding monocyte and macrophage phenotypes in COVID-19 is key for tackling the disease's pathological mechanisms. Here, we outline current knowledge on monocytes and macrophages in homeostasis and viral infections and summarize concepts and key findings on their role in COVID-19. While monocytes in the blood of patients with moderate COVID-19 present with an inflammatory, interferon-stimulated gene (ISG)-driven phenotype, cellular dysfunction epitomized by loss of HLA-DR expression and induction of S100 alarmin expression is their dominant feature in severe disease. Pulmonary macrophages in COVID-19 derived from infiltrating inflammatory monocytes are in a hyperactivated state resulting in a detrimental loop of pro-inflammatory cytokine release and recruitment of cytotoxic effector cells thereby exacerbating tissue damage at the site of infection.


Asunto(s)
COVID-19/inmunología , Antígenos HLA-DR/inmunología , Macrófagos/inmunología , Monocitos/inmunología , SARS-CoV-2/inmunología , COVID-19/patología , Humanos , Inflamación/inmunología , Inflamación/patología , Macrófagos/patología , Monocitos/patología , Índice de Severidad de la Enfermedad
10.
Cancers (Basel) ; 13(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670534

RESUMEN

Pediatric tumors frequently arise from embryonal cells, often displaying a stem cell-like ("small round blue") morphology in tissue sections. Because recently "stemness" has been associated with a poor immune response in tumors, we investigated the association of prognostic gene expression, stemness and the immune microenvironment systematically using transcriptomes of 4068 tumors occurring mostly at the pediatric and young adult age. While the prognostic landscape of gene expression (PRECOG) and infiltrating immune cell types (CIBERSORT) is similar to that of tumor entities occurring mainly in adults, the patterns are distinct for each diagnostic entity. A high stemness score (mRNAsi) correlates with clinical and morphologic subtype in Wilms tumors, neuroblastomas, synovial sarcomas, atypical teratoid rhabdoid tumors and germ cell tumors. In neuroblastomas, a high mRNAsi is associated with shortened overall survival. In Wilms tumors a high mRNAsi correlates with blastemal morphology, whereas tumors with predominant epithelial or stromal differentiation have a low mRNAsi and a high percentage of M2 type macrophages. This could be validated in Wilms tumor tissue (n = 78). Here, blastemal areas are low in M2 macrophage infiltrates, while nearby stromal differentiated areas contain abundant M2 macrophages, suggesting local microanatomic regulation of the immune response.

11.
ERJ Open Res ; 7(3)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34527724

RESUMEN

BACKGROUND: Immune cells play a major role in the pathogenesis of COPD. Changes in the distribution and cellular functions of major immune cells, such as alveolar macrophages (AMs) and neutrophils are well known; however, their transcriptional reprogramming and contribution to the pathophysiology of COPD are still not fully understood. METHOD: To determine changes in transcriptional reprogramming and lipid metabolism in the major immune cell type within bronchoalveolar lavage fluid, we analysed whole transcriptomes and lipidomes of sorted CD45+Lin-HLA-DR+CD66b-Autofluorescencehi AMs from controls and COPD patients. RESULTS: We observed global transcriptional reprogramming featuring a spectrum of activation states, including pro- and anti-inflammatory signatures. We further detected significant changes between COPD patients and controls in genes involved in lipid metabolism, such as fatty acid biosynthesis in GOLD2 patients. Based on these findings, assessment of a total of 202 lipid species in sorted AMs revealed changes of cholesteryl esters, monoacylglycerols and phospholipids in a disease grade-dependent manner. CONCLUSIONS: Transcriptome and lipidome profiling of COPD AMs revealed GOLD grade-dependent changes, such as in cholesterol metabolism and interferon-α and γ responses.

12.
Genome Med ; 13(1): 7, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441124

RESUMEN

BACKGROUND: The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases call for a better characterization and understanding of the changes in the immune system. METHODS: In order to dissect COVID-19-driven immune host responses, we performed RNA-seq of whole blood cell transcriptomes and granulocyte preparations from mild and severe COVID-19 patients and analyzed the data using a combination of conventional and data-driven co-expression analysis. Additionally, publicly available data was used to show the distinction from COVID-19 to other diseases. Reverse drug target prediction was used to identify known or novel drug candidates based on finding from data-driven findings. RESULTS: Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 16 COVID-19 patients (44 samples). Comparison of COVID-19 blood transcriptomes with those of a collection of over 3100 samples derived from 12 different viral infections, inflammatory diseases, and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host. CONCLUSIONS: Our study provides novel insights in the distinct molecular subgroups or phenotypes that are not simply explained by clinical parameters. We show that whole blood transcriptomes are extremely informative for COVID-19 since they capture granulocytes which are major drivers of disease severity.


Asunto(s)
COVID-19/patología , Neutrófilos/metabolismo , Transcriptoma , Antivirales/uso terapéutico , COVID-19/virología , Estudios de Casos y Controles , Regulación hacia Abajo , Reposicionamiento de Medicamentos , Humanos , Neutrófilos/citología , Neutrófilos/inmunología , Fenotipo , Análisis de Componente Principal , ARN/sangre , ARN/química , ARN/metabolismo , Análisis de Secuencia de ARN , Índice de Severidad de la Enfermedad , Regulación hacia Arriba , Tratamiento Farmacológico de COVID-19
13.
BMC Res Notes ; 12(1): 432, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31319888

RESUMEN

OBJECTIVE: A comprehensive analysis of RNA-Seq data uses a wide range of different tools and algorithms, which are normally limited to R users only. While several tools and advanced analysis pipelines are available, some require programming skills and others lack the support for many important features that enable a more comprehensive data analysis. There is thus, a need for a guided and easy to use comprehensive RNA-Seq data platform, which integrates the state of the art analysis workflow. RESULTS: We present the tool Shiny-Seq, which provides a guided and easy to use comprehensive RNA-Seq data analysis pipeline. It has many features such as batch effect estimation and removal, quality check with several visualization options, enrichment analysis with multiple biological databases, identification of patterns using advanced methods such as weighted gene co-expression network analysis, summarizing analysis as power point presentation and all results as tables via a one-click feature. The source code is published on GitHub ( https://github.com/schultzelab/Shiny-Seq ) and licensed under GPLv3. Shiny-Seq is written in R using the Shiny framework. In addition, the application is hosted on a public website hosted by the shinyapps.io server ( https://schultzelab.shinyapps.io/Shiny-Seq/ ) and as a Docker image https://hub.docker.com/r/makaho/shiny-seq .


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Sitios de Unión/genética , Análisis por Conglomerados , Ontología de Genes , Redes Reguladoras de Genes , Humanos , Internet , Factores de Transcripción/metabolismo
14.
Arzneimittelforschung ; 55(6): 303-6, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16032968

RESUMEN

The binding properties of the short-acting hypnotic agent propofol (CAS 2078-54-8) to human serum albumin were studied in vitro. Using centrifugation through ultrafiltration membranes the ratio of free and bound propofol as a function of the human serum albumin concentration was determined. In addition, a biomathematical approach was tested that allowed the determination of the number of binding sites from the measured binding profile. At a total propofol concentration of 8.81 +/- 0.25 microg/mL the concentration of the free fraction of propofol ranged from 338 +/- 11 ng/mL (mean +/- SE) at an albumin concentration of 0.5% to 15 +/- 2 ng/ mL at an albumin concentration of 8.0%. The corresponding percentage of propofol binding ranged from 96.07 +/- 0.14% to 99.83 +/- 0.02%. From this binding profile the binding site was estimated to be n(0) = 2. The measured influence of the albumin concentration on propofol binding might be of relevance in states of hypo- or hyperalbuminaemia which could result in an altered demand of propofol.


Asunto(s)
Anestésicos Intravenosos/sangre , Propofol/sangre , Albúmina Sérica/metabolismo , Algoritmos , Sitios de Unión/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Humanos , Unión Proteica , Ultrafiltración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA