Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(44): e2121273119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36306327

RESUMEN

Axon regeneration is an energy-demanding process that requires active mitochondrial transport. In contrast to the central nervous system (CNS), axonal mitochondrial transport in regenerating axons of the peripheral nervous system (PNS) increases within hours and sustains for weeks after injury. Yet, little is known about targeting mitochondria in nervous system repair. Here, we report the induction of sustained axon regeneration, neural activities in the superior colliculus (SC), and visual function recovery after optic nerve crush (ONC) by M1, a small molecule that promotes mitochondrial fusion and transport. We demonstrated that M1 enhanced mitochondrial dynamics in cultured neurons and accelerated in vivo axon regeneration in the PNS. Ex vivo time-lapse imaging and kymograph analysis showed that M1 greatly increased mitochondrial length, axonal mitochondrial motility, and transport velocity in peripheral axons of the sciatic nerves. Following ONC, M1 increased the number of axons regenerating through the optic chiasm into multiple subcortical areas and promoted the recovery of local field potentials in the SC after optogenetic stimulation of retinal ganglion cells, resulting in complete recovery of the pupillary light reflex, and restoration of the response to looming visual stimuli was detected. M1 increased the gene expression of mitochondrial fusion proteins and major axonal transport machinery in both the PNS and CNS neurons without inducing inflammatory responses. The knockdown of two key mitochondrial genes, Opa1 or Mfn2, abolished the growth-promoting effects of M1 after ONC, suggesting that maintaining a highly dynamic mitochondrial population in axons is required for successful CNS axon regeneration.


Asunto(s)
Axones , Traumatismos del Nervio Óptico , Humanos , Axones/metabolismo , Proteínas Mitocondriales/metabolismo , Compresión Nerviosa , Regeneración Nerviosa/fisiología , Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/metabolismo , Células Ganglionares de la Retina/fisiología , Nervio Ciático/metabolismo , Bibliotecas de Moléculas Pequeñas
2.
J Am Chem Soc ; 145(16): 9129-9135, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37053567

RESUMEN

Although alcohols are readily oxidized by a variety of oxidants, their oxidation by metal nitrido complexes is yet to be studied. We report herein visible-light-induced oxidation of primary and secondary alcohols to carbonyl compounds by a strongly luminescent osmium(VI) nitrido complex (OsN). The proposed mechanism involves initial rate-limiting hydrogen-atom transfer (HAT) from the α-carbon of the alcohol to OsN*. Attempts to develop catalytic oxidation of alcohols by OsN* using PhIO as the terminal oxidant resulted in the formation of novel osmium(IV) iminato complexes in which the nitrido ligand is bonded to a δ-carbon of the alcohol. Experimental and theoretical studies suggest that OsN* is reductively quenched by PhIO to generate PhIO+, which is a highly active oxidant that readily undergoes α- and δ-C-H activation of alcohols.

3.
J Am Chem Soc ; 145(17): 9584-9595, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37073952

RESUMEN

A new class of thermally activated delayed fluorescence (TADF) tetradentate C∧C∧N∧N ligand-containing gold(III) complexes containing acridinyl moieties has been designed and synthesized. These complexes exhibit orange-red to deep-red emission with photoluminescence quantum yields (PLQYs) of up to 0.76 in solid-state thin films. Short excited-state lifetimes of ≤2.0 µs and large radiative decay rate constants (kr) in the order of 105 s-1 have also been found in the complexes. High-performance solution-processed and vacuum-deposited organic light-emitting devices (OLEDs) based on these complexes have been fabricated, demonstrating high maximum external quantum efficiencies (EQEs) of 12.2 and 12.7%, respectively, which are among the best values ever reported for red-emitting gold(III)-based OLEDs. In addition, satisfactory operational half-lifetime (LT50) values of up to 34,058 h have been attained in these red-emitting devices. It is found that the operational stability is strongly dependent on the choice of functional groups on the acridinyl moieties, of which the incorporation of -O- and -S- linkers can effectively prolong the LT50 value by an order of magnitude. The TADF properties of the complexes are substantiated by the hypsochromic shift in emission energies and the remarkable enhancement in the emission intensity upon increasing temperature. The TADF properties have also been supported by temperature-dependent ultrafast transient absorption studies, with the direct observation of reverse intersystem crossing (RISC) and the determination of the activation parameters for the very first time, together with their excited-state dynamics.

4.
Inorg Chem ; 61(42): 16831-16840, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36228087

RESUMEN

A series of luminescent Pb2+ complexes, [Pb(L1)2]n (1), [Pb(L2)2]n (2), [Pb(L3)(NO3)(H2O)2]n (3), [Pb(L3)(Br)(H2O)]n (4), [Pb(L3)(Cl)(H2O)]n (5), and [Pb(L4)(H2O)2] (6) have been synthesized by treatment of polydentate tetrazolato ligands with various hydrated Pb2+ salts (HL1 = 2-(1H-tetrazol-5-yl)pyridine, HL2 = 3-(1H-tetrazol-5-yl)isoquinoline, HL3 = 6-(1H-tetrazol-5-yl)-2,2'-bipyridine, and H2L4 = 6,6'-bis(1H-tetrazol-5-yl)-2,2'-bipyridine). These complexes have been characterized by IR, TGA, and elemental analysis. Their crystal structures have been determined by X-ray crystallography, and the phase purity of bulk samples were further confirmed by PXRD. Their luminescence properties have been investigated in detail, and their emission origin may involve ligand-centered π-π* transition, metal-centered s-p transition and charge-transfer character. It is interesting to note that 5 exhibits obviously enhanced red-shifted emission, whose photoluminescence quantum yield (PLQY = 16.5%) is much higher than the other compounds (≤2%). Most importantly, the emission property of 5 was strongly affected by temperature. When the temperature rises from 295 to 493 K, the emission maximum gradually shifts to high energy due to the loss of the aqua ligand. In contrast, when the temperature is lowered from 295 to 13 K, two emission bands were observed. The low-energy emission band exhibits a slight blue shift, while a new high-energy emission band appears at around 520 nm, which is assigned to ligand-centered phosphorescence. After removal of the coordinated aqua ligand, the emission of 5-H2O is very sensitive to the vapors of volatile primary amines and acids, although they have different response mechanisms. This result indicates that 5-H2O may be a potential multifunctional sensor for temperature, volatile amines, and acids. To decipher the emission origin, DFT calculations have also been carried out based on the structure units of these compounds.

5.
Langmuir ; 37(39): 11592-11602, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34558895

RESUMEN

Silanization processes with perfluoroalkyl silanes have been demonstrated to be effective in developing advanced materials with many functional properties, including hydrophobicity, water repellency, and self-cleaning properties. However, practical industrial applications of perfluoroalkyl silanes are limited by their extremely high cost. On the basis of our recent work on photoredox catalysis for amidation with perfluoroalkyl iodides, its application for surface chemical modification on filter paper, as an illustrative example, has been developed and evaluated. Before photocatalytic amidation, the surface is functionalized with amine functional groups by silanization with 3-(trimethoxysilyl)propylamine. All chemically modified surfaces have been fully characterized by attenuated total reflection infrared (ATR-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and three-dimensional (3D) profiling to confirm the successful silanization and photocatalytic amidation. After surface modification of the filter papers with perfluoroalkanamide, they show high water repellency and hydrophobicity with contact angles over 120°. These filter papers possess high wetting selectivity, which can be used to effectively separate the organic and aqueous biphasic mixtures. The perfluoroalkanamide-modified filter papers can be used for separating organic/aqueous biphasic mixtures over many cycles without lowering the separating efficiency, indicating their reusability and excellent durability.

6.
Inorg Chem ; 59(7): 4406-4413, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32154724

RESUMEN

We have recently reported a strongly luminescent osmium(VI) nitrido complex [OsVI(N)(NO2-L)(CN)3]- [HNO2-L = 2-(2-hydroxy-5-nitrophenyl)benzoxazole]. The excited state of this complex readily activates the strong C-H bonds of alkanes and arenes (Commun. Chem. 2019, 2, 40). In this work, we attempted to tune the excited-state properties of this complex by introducing various substituents on the bidentate L ligand. The series of nitrido complexes were characterized by IR, UV/vis, 1H NMR, and electrospray ionization mass spectrometry. The molecular structures of five of the nitrido compounds have been determined by X-ray crystallography. The photophysical and electrochemical properties of these complexes have been investigated. The luminescence of these nitrido complexes in the solid state, in a CH2Cl2 solution, and in a CH2Cl2 solid matrix at 77 K glassy medium clearly shows that these emissions are due to 3LML'CT [L ligand to Os≡N] phosphorescence. The presence of strongly electron-withdrawing substituents in these complexes enhances the LML'CT emission. Our result demonstrates that the excited-state properties of this novel class of luminescent osmium(VI) nitrido complexes can be fine-tuned by introducing various substituents on the bidentate L ligand.

7.
Org Biomol Chem ; 18(42): 8686-8693, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33078803

RESUMEN

Visible light photocatalytic cross-coupling and addition reactions of arylalkynes with perfluoroalkyl iodides have been developed. Through slight modifications of the reaction conditions, reactions that are selective for the preparation of the C-C coupling product (perfluoroalkyl alkynes) and the addition products (iodo-perfluoroalkyl substituted alkenes) can be achieved. These reactions work well with different types of alkynes and perfluoroalkyl iodides. As the iodide generated from the reaction can serve as a reductant to regenerate the photocatalyst from its oxidized form, no sacrificial electron donor is required.

8.
Acc Chem Res ; 51(1): 149-159, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29265804

RESUMEN

Photochromic compounds are well-known for their promising applications in many areas. In this context, many different photochromic families have been developed. As the early study of these photochromic compounds was mainly focused on the organic system, their photochromic reactivity was mainly derived from the singlet excited state. We hypothesized that the incorporation of the photochromic ligand to the transition metal complex and coordination complex systems would not only render the triplet state of the organic photochromic system more readily accessible due to the large spin-orbit coupling of the heavy metal center but also would lead to ready extension of the excitation wavelength to less destructive longer wavelength low-energy excitation. On the other hand, the long-lived triplet excited states of the metal complexes are also suitable for energy or electron transfer processes, which should lead to new photochromic behavior and photoswitchable functional properties. Through the incorporation of the stilbene-, azo-, spirooxazine-, and dithienylethene-containing ligands to transition metal complex systems with heavy metal centers and suitable excited states, triplet state photosensitized photochromism has been achieved. With the triplet state photosensitization, the photochromism of these compounds could be extended from the high energy UV region to the visible region. In the development of dithienylethene-containing ligands, we have adopted an alternative strategy, which involves the incorporation of nitrogen and sulfur heterocycles that directly form part of the dithienylethene framework as ligands to exert a much stronger perturbation and influence on the excited state properties of the photochromic unit by the metal center. On the basis of the new design, wide ranges of dithienylethene-containing ligands, including phenanthrolines, 2-pyridylimidazoles, N-pyridylimidazol-2-ylidenes, cyclometalating thienylpyridines, ß-diketonates, and ß-ketoiminates have been designed and incorporated into various coordination systems. Apart from the photosensitization, tuning of the closed form absorption and photochromic behavior based on the perturbation of the metal center, coordination-assisted planarization, modification of the ancillary ligands and introduction of various electronic excited states derived from the coordination system have been successfully demonstrated. This strategy can be used for developing NIR photochromic dithienylethenes. With the above effects observed upon the coordination to different transition metal centers and central atoms, this strategy offers a simple and effective way for the modification of the photochromic characteristics. Moreover, the emission and other functional properties of the coordination systems could also be photoswitched by the photochromic reactions.

9.
Chemphyschem ; 20(15): 1946-1953, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31231907

RESUMEN

The photophysical processes in a series of isocyano Re(I) phenanthroline complexes {[Re(CNR)n (CO)4-n (phen)](PF6 ); n=2, 3, 4, R=2,6-(i Pr)2 C6 H3 - or t Bu- (n=2)} in acetonitrile have been studied by resonance Raman spectroscopy, transient resonance Raman spectroscopy, and femtosecond / nanosecond transient spectroscopy to elucidate the nature of their electronic transitions and emissive excited state(s). The kinetics of the intersystem crossing, vibrational relaxation and radiative decay of the metal-to-ligand charge transfer {MLCT [dπ(Re)→π*(phen)]} excited state have also been determined.

10.
Inorg Chem ; 58(10): 6696-6705, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31063368

RESUMEN

A series of cyano-bridged homotrinuclear Re(I) complexes with the general formula of {[Re]'[Re][Re]'}+ {[Re]' = -[ReI(CO)2(LL)(X)]; [Re] = -[(NC)ReI(CO)2(phen)(CN)]-; LL = diimine, diphosphine, or two carbonyl ligands; X = triphenylphosphine or carbonyl ligand} and the corresponding mononuclear complex analogues were synthesized. The structures of most of the trinuclear Re(I) complexes have been determined by X-ray crystallography. The relative orientations of peripheral to central Re(I) units in these structures vary considerably. The photophysical properties of these trinuclear Re(I) complexes have been examined. Except for the trinuclear Re(I) complex with Br2phen ligand, all the other triads display orange to red photoluminescence derived from the 3MLCT [dπ(Re) → π*(phen)] origin of the central Re(I) unit, suggestive of efficient energy transfer between the peripheral chromophores and the central unit. In addition to the efficient energy transfer processes between the Re(I) chromophores in these trinuclear complexes, the ability of the [NC-Re-CN] bridging ligands for electronic coupling between the rhenium metal centers is evidenced by ca. 0.2-0.3 V separation of the two rhenium metal-based oxidation potentials of the chemically equivalent peripheral units.

11.
Inorg Chem ; 58(17): 11372-11381, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31411456

RESUMEN

A series of blue-green emitting RuII diisocyano complexes containing 2-benzoxazol-2-ylphenolate (PBO) have been prepared. The complexes were isolated under varied reaction conditions in two isomeric forms, i.e., trans,trans,trans- (1) and cis,trans,cis- (2), with varied ligand coordination geometry above the RuII center. The photoluminescence of the isomeric complexes has been compared and tuned by the systematic variation of the electronic properties of the isocyanides. The cis,trans,cis- isomers exhibit structureless emission in the blue-green region (471-517 nm) upon excitation at λex > 400 nm in dichloromethane solution at room temperature. Both isomeric forms show similarly structured greenish emission at 499-523 nm on excitation at λex > 355 nm in a methanol/ethanol (4:1) glassy medium at 77 K. On careful comparison with the corresponding absorption and electrochemical data, it is suggested that the solution emission of the cis,trans,cis- isomers (2) at room temperature is originated from the metal-to-ligand charge transfer (MLCT), while a ligand-centered (LC) parentage is assigned for the emission in a glassy state for both isomeric forms. In line with the above experimental results, DFT calculation demonstrates the change in the nature and relative energy of the HOMOs and LUMOs with respect to the varied ligand coordination geometry and π-accepting ability of the isocyanides.

12.
Inorg Chem ; 57(21): 13963-13972, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30354094

RESUMEN

Despite the well-reported MLCT [dπ(M) → π*(CNR)] transitions in the isocyano transition metal complexes, emissive complexes with phosphorescence derived from MLCT [dπ(M) → π*(CNR)] were not extensively studied. To provide insights into the design strategy of phosphorescent rhenium(I) complexes with an emissive 3MLCT [dπ(Re) → π*(CNR)] excited state, a series of pentaisocyano rhenium(I) complexes have been synthesized. In contrast to most of the reported penta- or hexaisocyano rhenium(I) complexes with unsubstituted or alkyl- or monohalo-substituted phenylisocyanide ligands, which only exhibit photoluminescence in 77 K glassy medium, the solutions of all of these complexes were found to show phosphorescence at room temperature. Detailed study on their emission properties revealed that they are derived from the 3MLCT [dπ(Re) → π*(CNR)] excited state mixed with LL'CT character. It has been shown that the strong electron-withdrawing substituents on the isocyanide ligands can lower the energy of the MLCT [dπ(Re) → π*(CNR)] state and raise the deactivating ligand-field state. These effects are the crucial criteria to render the pentaisocyano rhenium(I) complexes emissive. Moreover, the emission properties in terms of energy, lifetime, and quantum yields can also be enhanced by the ancillary ligand.

13.
Mikrochim Acta ; 185(9): 428, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135991

RESUMEN

The negatively charged ruthenate(II) complex [Ru(bpy)(PPh3)(CN)3]- and gold nanoparticles (AuNPs) were used for detecting lysozyme (LYS). The luminescence of the ruthenate(II) complex is quenched by AuNPs, and this induces the aggregation of AuNPs and a color change from red to blue. After addition of lysozyme, the positively charged lysozyme and the negatively charged ruthenate(II) complex bind each other by electrostatic interaction firstly. This prevents AuNPs from aggregation and quenches the emission of the ruthenate(II) complex. Its luminescence and the degree of aggregation of the AuNPs can be used to quantify LYS. The fluorometric calibration plot is linear in the 0.01 to 0.20 µM LYS concentration range, and the calibration plot is linear between 0.02 and 0.20 µM of LYS. The color of the solution can be easily distinguished by bare eyes at 0.08 µM or higher concentration of LYS. The applicability of the method was verified by the correct analysis of LYS in chicken egg white. Graphical abstract Schematic of a luminometric and colorimetric probe based on the induced aggregation of gold nanoparticles by an anionic luminescent ruthenate(II) complex or sensitive lysozyme detection.

14.
J Am Chem Soc ; 138(30): 9413-6, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27443679

RESUMEN

The design of highly efficient and selective photocatalytic systems for CO2 reduction that are based on nonexpensive materials is a great challenge for chemists. The photocatalytic reduction of CO2 by [Co(qpy)(OH2)2](2+) (1) (qpy = 2,2':6',2″:6″,2‴-quaterpyridine) and [Fe(qpy)(OH2)2](2+) (2) have been investigated. With Ru(bpy)3(2+) as the photosensitizer and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole as the sacrificial reductant in CH3CN/triethanolamine solution under visible-light excitation (blue light-emitting diode), a turnover number (TON) for CO as high as 2660 with 98% selectivity can be achieved for the cobalt catalyst. In the case of the iron catalyst, the TON was >3000 with up to 95% selectivity. More significantly, when Ru(bpy)3(2+) was replaced by the organic dye sensitizer purpurin, TONs of 790 and 1365 were achieved in N,N-dimethylformamide for the cobalt and iron catalysts, respectively.

15.
Inorg Chem ; 55(16): 7969-79, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27458842

RESUMEN

A series of luminescent isocyanorhenium(I) complexes with chelating acyclic diaminocarbene ligands (N^C) has been synthesized and characterized. Two of these carbene complexes have also been structurally characterized by X-ray crystallography. These complexes show blue-to-red phosphorescence, with the emission maxima not only considerably varied with a change in the number of ancillary isocyanide ligands but also extremely sensitive to the electronic and steric nature of the substituents on the acyclic diaminocarbene ligand. A detailed study with the support of density functional theory calculations revealed that the lowest-energy absorption and phosphorescence of these complexes in a degassed CH2Cl2 solution are derived from the predominantly metal-to-ligand charge-transfer [dπ(Re) → π*(N^C)] excited state. The unprecedented anion-binding and CO2-capturing properties of the acyclic diaminocarbene have also been described.

16.
Chemistry ; 21(6): 2603-12, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25504822

RESUMEN

A new series of neutral isocyanoborato rhenium(I) diimine complexes [Re(CO)3 (N^N)(CNBR3 )], where N^N=bpy, 4,4'-Me2 bpy, phen, 4,7-Me2 phen, 2,9-Me2 phen, 3,4,7,8-Me4 phen; R=C6 F5 , C6 H5 , Cl, 4-ClC6 H4 , 3,5-(CF3 )2 C6 H3 , with various isocyanoborate and diimine ligands of diverse electronic and steric nature have been synthesized and characterized. The X-ray crystal structures of six complexes have also been determined. These complexes displayed intense bluish green to yellow phosphorescence at room temperature in dichloromethane solution. The photophysical and electrochemical properties of these complexes had been investigated. To elucidate the electronic structures and transitions of these complexes, DFT and TD-DFT calculations have been performed, which revealed that the lowest-energy electronic transition associated with these complexes originates from a mixture of MLCT [dπ(Re)→π*(N^N)] and LLCT [π(CNBR3 )→π*(N^N)] transitions.

17.
Angew Chem Int Ed Engl ; 54(17): 5246-9, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25727326

RESUMEN

The study of manganese complexes as water-oxidation catalysts (WOCs) is of great interest because they can serve as models for the oxygen-evolving complex of photosystem II. In most of the reported Mn-based WOCs, manganese exists in the oxidation states III or IV, and the catalysts generally give low turnovers, especially with one-electron oxidants such as Ce(IV) . Now, a different class of Mn-based catalysts, namely manganese(V)-nitrido complexes, were explored. The complex [Mn(V) (N)(CN)4 ](2-) turned out to be an active homogeneous WOC using (NH4 )2 [Ce(NO3 )6 ] as the terminal oxidant, with a turnover number of higher than 180 and a maximum turnover frequency of 6 min(-1) . The study suggests that active WOCs may be constructed based on the Mn(V) (N) platform.

18.
Chemistry ; 20(32): 9930-9, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-25042127

RESUMEN

A novel class of alkynylgold(III) complexes of the dianionic ligands derived from 2,6-bis(benzimidazol-2'-yl)pyridine (H2bzimpy) derivatives has been synthesized and characterized. The structure of one of the complexes has also been determined by X-ray crystallography. Electronic absorption studies showed low-energy absorption bands at 378-466 nm, which are tentatively assigned as metal-perturbed π-π* intraligand transitions of the bzimpy(2-) ligands. A computational study has been performed to provide further insights into the nature of the electronic transitions for this class of complexes. One of the complexes has been found to show gelation properties, driven by π-π and hydrophobic-hydrophobic interactions. This complex exhibited concentration- and temperature-dependent (1)H NMR spectra. The morphology of the gel has been characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM).

19.
Inorg Chem ; 53(6): 3022-31, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24592975

RESUMEN

A series of luminescent Re(I) diimine complexes with various types of N-heterocyclic carbene (NHC) ligands has been synthesized through the reaction between isocyano Re(I) diimine complexes with different nucleophiles. These Re(I) NHC complexes were characterized by (1)H and (13)C NMR and IR spectroscopy, mass spectrometry, and elemental analysis. One of the precursor complexes fac-{Re(CO)3[CN(H)C6H4-2-O]2Br} and five of the Re(I) diimine complexes with different types of NHC ligands were also structurally characterized by X-ray crystallography. In the preparation of these Re(I) NHC complexes, it is found that the reactivity of the isocyanide ligands in the synthetic complex precursors is significantly affected by the electronic nature of the trans ligand. All these complexes displayed (3)MLCT [dπ(Re) → π*(N-N)] phosphorescence in degassed CH2Cl2 and CH3CN solutions at room temperature. Through the study of the photophysical and electrochemical properties of these Re(I) NHC complexes, the electronic properties of different types of NHC ligands were investigated.

20.
Mater Horiz ; 11(1): 151-162, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37889511

RESUMEN

A new class of thermally activated delayed fluorescence (TADF) pyridine-/pyrazine-containing tetradentate C^C^N^N gold(III) complexes have been designed and synthesized. Displaying photoluminescence quantum yields (PLQYs) of up to 0.77 in solid-state thin films, these complexes showed at-least a six-fold increase in the radiative decay rate constant (kr) in toluene upon increasing temperature from 210 to 360 K. Using variable-temperature (VT) ultrafast transient absorption (TA) spectroscopy, the reverse intersystem crossing (RISC) processes were directly observed and the activation parameters were determined, in line with the results of the Boltzmann two-level model fittings, in which the energy separation values between the lowest-lying singlet excited state (S1) and the lowest-lying triplet excited state (T1), ΔE(S1-T1), of these complexes were estimated to be in the range of 0.16-0.18 eV. Through strategic modification of the position of the electron-donating -tBu substituent in the cyclometalating ligand, the permanent dipole moments (PDMs) of these tetradentate gold(III) emitters could be manipulated to enhance their horizontal alignment in the emitting layer of organic light-emitting devices (OLEDs). Consequently, the resulting vacuum-deposited OLEDs demonstrated a 30% increase in the theoretical out-coupling efficiency (ηout), as well as promising electroluminescence (EL) performance with maximum external quantum efficiencies (EQEs) of up to 15.7%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA