Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Imaging ; 11(1): 27-32, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22418025

RESUMEN

Multimodal bioluminescence (BLI) and single-photon emission computed tomography/computed tomography (SPECT/CT) imaging were investigated as means to monitor somatostatin receptor subtype 2 (SST2)-positive neuroendocrine tumors as both a subcutaneously implanted and a liver metastasis animal model in mice and rats. Ultimately, such a model will be of use for studying SST2-targeted peptide receptor radionuclide therapy (PRRT). CA20948 cells were transfected with a green fluorescent protein/luciferase plasmid construct. Cells were inoculated subcutaneously in the shoulder of nude mice: nontransfected cells in the left shoulder and transfected cells in the right shoulder. BLI, SPECT/CT imaging, biodistribution analysis, and ex vivo autoradiography of the tumors were performed. BLI and SPECT/CT imaging were also performed on an intrahepatic tumor model in the rat. Caliper volume measurement of transfected tumors could be correlated with BLI measurements (R2 = .76). SPECT/CT imaging showed high levels of accumulation of 111In-DTPA-octreotide in control and transfected tumors, which was confirmed by biodistribution analysis and autoradiography. Subcapsular inoculation of transfected cells in rat liver resulted in an intrahepatic tumor, which could be visualized by both SPECT/CT and BLI. Transfection of CA20948 tumor cells did not alter the growth properties of the cell line or the expression of SST2. Transfected tumors could be clearly visualized by BLI and SPECT/CT imaging. The transfected SST2-positive tumor cell line could represent a novel preclinical model for tumor monitoring in studies that aim at further optimizing PRRT for neuroendocrine tumors.


Asunto(s)
Receptores de Somatostatina/metabolismo , Animales , Autorradiografía , Línea Celular Tumoral , Ratones , Ratones Desnudos , Microscopía Fluorescente , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Radiografía , Ratas , Tomografía Computarizada de Emisión de Fotón Único
2.
Eur J Nucl Med Mol Imaging ; 38(8): 1417-25, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21523391

RESUMEN

PURPOSE: Specific overexpression of cholecystokinin 2 (CCK2)/gastrin receptors has been demonstrated in several tumours of neuroendocrine origin. In some of these cancer types, such as medullary thyroid cancer (MTC), a sensitive diagnostic modality is still unavailable and therapeutic options for inoperable lesions are needed. Peptide receptor radionuclide therapy (PRRT) may be a viable therapeutic strategy in the management of these patients. Several CCK2R-targeted radiopharmaceuticals have been described in recent years. As part of the European Union COST Action BM0607 we studied the in vitro and in vivo characteristics of 12 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated CCK2R binding peptides. In the present study, we analysed binding and internalization characteristics. Stability, biodistribution and imaging studies have been performed in parallel by other centres involved in the project. METHODS: Determination of IC(50) values was performed using autoradiography, with DOTA-peptides displacing (125)I-CCK from receptors on tissue sections from human tumours. Saturation binding and internalization experiments were performed using (111)In-labelled peptides. The rat AR42J cell line and the human A431-CCK2R transfected cell line were utilized for in vitro experiments; dissociation constants (K(d)) and apparent number of binding sites (B(max)) were determined. Internalization was determined in receptor-expressing cells by incubating with tracer amounts of peptide at 37 and 4°C for different times up to 120 min. Surface-bound peptide was then stripped either by acid wash or subsequent incubation with 1 µM unlabelled peptide at 4°C. RESULTS: All peptides showed high receptor affinity with IC(50) values ranging from 0.2 to 3.4 nM. Saturation experiments also showed high affinity with K(d) values in the 10(-9)-10(-8) M range. B(max) values estimated in A431-CCK2R cells ranged from 0.6 to 2.2 × 10(6) per cell. All peptides showed high levels of internalization when incubated at 37°C. CONCLUSION: All DOTA-conjugated peptides showed high receptor binding and internalization properties and appear suitable for further characterization, as described in other articles of this issue.


Asunto(s)
Conducta Cooperativa , Compuestos Heterocíclicos con 1 Anillo/química , Radioisótopos de Indio/química , Péptidos/química , Péptidos/metabolismo , Receptor de Colecistoquinina B/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Humanos , Concentración 50 Inhibidora , Datos de Secuencia Molecular , Unión Proteica , Transporte de Proteínas , Ratas
3.
EJNMMI Res ; 6(1): 6, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26791386

RESUMEN

BACKGROUND: Targeted alpha therapy has been postulated to have great potential for the treatment of small clusters of tumour cells as well as small metastases. (213)Bismuth, an α-emitter with a half-life of 46 min, has shown to be effective in preclinical as well as in clinical applications. In this study, we evaluated whether (213)Bi-[DOTA(0), Tyr(3)]-octreotate ((213)Bi-DOTATATE), a (213)Bi-labelled somatostatin analogue with high affinity for somatostatin receptor subtype 2 (SSTR2), is suitable for the treatment of larger neuroendocrine tumours overexpressing SSTR2 in comparison to its effectiveness for smaller tumours. We performed a preclinical targeted radionuclide therapy study with (213)Bi-DOTATATE in animals bearing tumours of different sizes (50 and 200 mm(3)) using two tumour models: H69 (human small cell lung carcinoma) and CA20948 (rat pancreatic tumour). METHODS: Pharmacokinetics was determined for calculation of dosimetry in organs and tumours. H69- or CA20948-xenografted mice with tumour volumes of approximately 120 mm(3) were euthanized at 10, 30, 60 and 120 min post injection of a single dose of (213)Bi-DOTATATE (1.5-4.8 MBq). To investigate the therapeutic efficacy of (213)Bi-DOTATATE, xenografted H69 and CA20948 tumour-bearing mice with tumour sizes of 50 and 200 mm(3) were administered daily with a therapeutic dose of (213)Bi-DOTATATE (0.3 nmol, 2-4 MBq) for three consecutive days. The animals were followed for 90 days after treatment. At day 90, mice were injected with 25 MBq (99m)Tc-DMSA and imaged by SPECT/CT to investigate possible renal dysfunction due to (213)Bi-DOTATATE treatment. RESULTS: Higher tumour uptakes were found in CA20948 tumour-bearing animals compared to those in H69 tumour-bearing mice with the highest tumour uptake of 19.6 ± 6.6 %IA/g in CA20948 tumour-bearing animals, while for H69 tumour-bearing mice, the highest tumour uptake was found to be 9.8 ± 2.4 %IA/g. Nevertheless, as the anti-tumour effect was more pronounced in H69 tumour-bearing mice, the survival rate was higher. Furthermore, in the small tumour groups, no regrowth of tumour was found in two H69 tumour-bearing mice and in one of the CA20948 tumour-bearing mice. No renal dysfunction was observed in (213)Bi-DOTATATE-treated mice after the doses were applied. CONCLUSIONS: (213)Bi-DOTATATE demonstrated a great therapeutic effect in both small and larger tumour lesions. Higher probability for stable disease was found in animals with small tumours. (213)Bi-DOTATATE was effective in different neuroendocrine (H69 and CA20948) tumour models with overexpression of SSTR2 in mice.

4.
J Nucl Med ; 57(4): 601-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26719375

RESUMEN

Liposomal chemotherapy offers several advantages over conventional therapies, including high intratumoral drug delivery, reduced side effects, prolonged circulation time, and the possibility to dose higher. The efficient delivery of liposomal chemotherapeutics relies, however, on the enhanced permeability and retention (EPR) effect, which refers to the ability of macromolecules to extravasate leaky tumor vessels and accumulate in the tumor tissue. Using a panel of human xenograft tumors, we evaluated the influence of the EPR effect on liposomal distribution in vivo by injection of pegylated liposomes radiolabeled with (111)In. Liposomal accumulation in tumors and organs was followed over time by SPECT/CT imaging. We observed that fast-growing xenografts, which may be less representative of tumor development in patients, showed higher liposomal accumulation than slow-growing xenografts. Additionally, several other parameters known to influence the EPR effect were evaluated, such as blood and lymphatic vessel density, intratumoral hypoxia, and the presence of infiltrating macrophages. The investigation of various parameters showed a few correlations. Although hypoxia, proliferation, and macrophage presence were associated with tumor growth, no hard conclusions or predictions could be made regarding the EPR effect or liposomal uptake. However, liposomal uptake was significantly correlated with tumor growth, with fast-growing tumors showing a higher uptake, although no biological determinants could be elucidated to explain this correlation.


Asunto(s)
Xenoinjertos/diagnóstico por imagen , Tejido Subcutáneo/trasplante , Animales , Vasos Sanguíneos , Proliferación Celular , Humanos , Hipoxia/diagnóstico por imagen , Radioisótopos de Indio , Liposomas , Vasos Linfáticos/diagnóstico por imagen , Macrófagos/diagnóstico por imagen , Ratones , Nanomedicina/métodos , Permeabilidad , Radiofármacos/administración & dosificación , Radiofármacos/farmacocinética , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Contrast Media Mol Imaging ; 10(6): 413-20, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25995102

RESUMEN

Anti-tumor efficacy of targeted peptide-receptor radionuclide therapy (PRRT) relies on several factors, including functional tumor vasculature. Little is known about the effect of PRRT on tumor vasculature. With dynamic contrast-enhanced (DCE-) MRI, functional vasculature is imaged and quantified using contrast agents. In small animals DCE-MRI is a challenging application. We optimized a clinical sequence for fast hemodynamic acquisitions, time-resolved imaging of contrast kinetics (TRICKS), to obtain DCE-MRI images at both high spatial and high temporal resolution in mice and rats. Using TRICKS, functional vasculature was measured prior to PRRT and longitudinally to investigate the effect of treatment on tumor vascular characteristics. Nude mice bearing H69 tumor xenografts and rats bearing syngeneic CA20948 tumors were used to study perfusion following PRRT administration with (177) lutetium octreotate. Both semi-quantitative and quantitative parameters were calculated. Treatment efficacy was measured by tumor-size reduction. Optimized TRICKS enabled MRI at 0.032 mm(3) voxel size with a temporal resolution of less than 5 s and large volume coverage, a substantial improvement over routine pre-clinical DCE-MRI studies. Tumor response to therapy was reflected in changes in tumor perfusion/permeability parameters. The H69 tumor model showed pronounced changes in DCE-derived parameters following PRRT. The rat CA20948 tumor model showed more heterogeneity in both treatment outcome and perfusion parameters. TRICKS enabled the acquisition of DCE-MRI at both high temporal resolution (Tres ) and spatial resolutions relevant for small animal tumor models. With the high Tres enabled by TRICKS, accurate pharmacokinetic data modeling was feasible. DCE-MRI parameters revealed changes over time and showed a clear relationship between tumor size and Ktrans .


Asunto(s)
Medios de Contraste/farmacocinética , Aumento de la Imagen/métodos , Lutecio/uso terapéutico , Imagen por Resonancia Magnética/métodos , Neoplasias/diagnóstico por imagen , Radioisótopos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Desnudos , Terapia Molecular Dirigida/métodos , Neoplasias/irrigación sanguínea , Neoplasias/radioterapia , Perfusión/métodos , Radiografía , Ratas , Ratas Endogámicas Lew , Receptores de Péptidos/metabolismo , Resultado del Tratamiento
6.
J Nucl Med ; 56(5): 752-7, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25791989

RESUMEN

UNLABELLED: Breast cancer (BC) consists of multiple subtypes defined by various molecular characteristics, for instance, estrogen receptor (ER) expression. Methods for visualizing BC include mammography, MR imaging, ultrasound, and nuclear medicine-based methods such as (99m)Tc-sestamibi and (18)F-FDG PET, unfortunately all lacking specificity. Peptide receptor scintigraphy and peptide receptor radionuclide therapy are successfully applied for imaging and therapy of somatostatin receptor-expressing neuroendocrine tumors using somatostatin receptor radioligands. On the basis of a similar rationale, radioligands targeting the gastrin-releasing peptide receptor (GRP-R) might offer a specific method for imaging and therapy of BC. The aim of this study was to explore the application of GRP-R radioligands for imaging and therapy of BC by introducing valid preclinical in vitro and in vivo models. METHODS: GRP-R expression of 50 clinical BC specimens and the correlation with ER expression was studied by in vitro autoradiography with the GRP-R agonist (111)In-AMBA. GRP-R expression was also analyzed in 9 BC cell lines applying (111)In-AMBA internalization assays and quantitative reverse transcriptase polymerase chain reaction. In vitro cytotoxicity of (177)Lu-AMBA was determined on the GRP-R-expressing BC cell line T47D. SPECT/CT imaging and biodistribution were studied in mice with subcutaneous and orthotopic ER-positive T47D and MCF7 xenografts after injection of the GRP-R antagonist (111)In-JMV4168. RESULTS: Most of the human BC specimens (96%) and BC cell lines (6/9) were found to express GRP-R. GRP-R tumor expression was positively (P = 0.026, χ(2)(4) = 12,911) correlated with ER expression in the human BC specimens. Treatment of T47D cells with 10(-7) M/50 MBq of (177)Lu-AMBA resulted in 80% reduction of cells in vitro. Furthermore, subcutaneous and orthotopic tumors from both BC cell lines were successfully visualized in vivo by SPECT/CT using (111)In-JMV4168; T47D tumors exhibited a higher uptake than MCF7 xenografts. CONCLUSION: Targeting GRP-R-expressing BC tumors using GRP-R radioligands is promising for nuclear imaging and therapy, especially in ER-positive BC patients.


Asunto(s)
Bombesina/metabolismo , Neoplasias de la Mama/metabolismo , Receptores de Bombesina/metabolismo , Animales , Bombesina/farmacocinética , Bombesina/uso terapéutico , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Neoplasias de la Mama/radioterapia , Línea Celular Tumoral , Transformación Celular Neoplásica , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Radioisótopos de Indio/uso terapéutico , Marcaje Isotópico , Ligandos , Ratones , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X
7.
EJNMMI Res ; 4: 21, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24995150

RESUMEN

BACKGROUND: Previously, we reported on the unexpected development of distant metastases in the subcutaneous rat pancreas CA20948 tumor model after 4.5 weeks of treatment with RAD001-only or in combination with [(177)Lu-DOTA(0),Tyr(3)]octreotate ((177)Lu-DOTATATE) (Cancer Res. 73:12-8, 2013). Moreover, the combination therapy was less effective compared to (177)Lu-DOTATATE-only. In the current study, we address the following questions: (1) Why was the combination therapy less effective? Is (177)Lu-DOTATATE tumor uptake affected by pretreatment with RAD001? (2) Could sudden cessation of RAD001 therapy cause the development of distant metastases? (3) Is (177)Lu-DOTATATE an effective treatment option for these metastases? METHODS: Lewis rats (HanHsd or SsNHsd substrain with a slight difference in immune response) bearing subcutaneous CA20948 tumors were treated with either 125 or 275 MBq (177)Lu-DOTATATE, RAD001, or their combination. RAD001 was given twice a week for 4.5 or 12 weeks, whereas (177)Lu-DOTATATE was given as a single injection. When combined, RAD001 was started either 3 days prior to or 3 days post administration of (177)Lu-DOTATATE. SPECT/CT was performed to quantify (177)Lu-DOTATATE tumor uptake. Where indicated, primary tumors were surgically removed when tumor size is >6,000 mm(3) to enable monitoring for possible metastasis. If metastases were suspected, an (111)In-DTPA-octreotide SPECT/CT scan was performed. Seven rats with metastases were treated with 400 MBq (177)Lu-DOTATATE. RESULTS: Lu-DOTATATE tumor uptake was not significantly affected by RAD001 pretreatment. The occurrence of metastases after RAD001 treatment was not dose dependent in the dose range tested, nor was it related to the duration of RAD001 treatment. In the experiment in which the LEW/SsNsd substrain was used, only 12.5% of RAD001-treated rats showed complete response (CR), compared to 50% tumor regression in the control group. Re-treatment with a high dose of (177)Lu-DOTATATE resulted in CR in only two out of seven animals. CONCLUSION: Less effective anti-tumor effects after the combination of RAD001 + (177)Lu-DOTATATE could not be explained by reduced (177)Lu-DOTATATE tumor uptake after RAD001. Our current data support RAD001-induced immune suppression as the reason for this observation. No evidence was found that cessation of RAD001 treatment caused development of metastases. Metastases appeared to be less sensitive to (177)Lu-DOTATATE treatment than primary tumors.

8.
Arthritis Res Ther ; 16(1): R32, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24472689

RESUMEN

INTRODUCTION: Articular cartilage needs sulfated-glycosaminoglycans (sGAGs) to withstand high pressures while mechanically loaded. Chondrocyte sGAG synthesis is regulated by exposure to compressive forces. Moderate physical exercise is known to improve cartilage sGAG content and might protect against osteoarthritis (OA). This study investigated whether rat knee joints with sGAG depleted articular cartilage through papain injections might benefit from moderate exercise, or whether this increases the susceptibility for cartilage degeneration. METHODS: sGAGs were depleted from cartilage through intraarticular papain injections in the left knee joints of 40 Wistar rats; their contralateral joints served as healthy controls. Of the 40 rats included in the study, 20 rats remained sedentary, and the other 20 were subjected to a moderately intense running protocol. Animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (µCT) to measure subchondral bone changes and single-photon emission computed tomography (SPECT)/CT to determine synovial macrophage activation. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced µCT and histology to measure sGAG content and cartilage thickness. RESULTS: All outcome measures were unaffected by moderate exercise in healthy control joints of running animals compared with healthy control joints of sedentary animals. Papain injections in sedentary animals resulted in severe sGAG-depleted cartilage, slight loss of subchondral cortical bone, increased macrophage activation, and osteophyte formation. In running animals, papain-induced sGAG-depleted cartilage showed increased cartilage matrix degradation, sclerotic bone formation, increased macrophage activation, and more osteophyte formation. CONCLUSIONS: Moderate exercise enhanced OA progression in papain-injected joints and did not protect against development of the disease. This was not restricted to more-extensive cartilage damage, but also resulted in pronounced subchondral sclerosis, synovial macrophage activation, and osteophyte formation.


Asunto(s)
Artritis Experimental/patología , Cartílago Articular/patología , Glicosaminoglicanos/deficiencia , Osteoartritis de la Rodilla/patología , Condicionamiento Físico Animal/fisiología , Animales , Cartílago Articular/efectos de los fármacos , Masculino , Papaína/toxicidad , Ratas , Ratas Wistar , Tomografía Computarizada de Emisión de Fotón Único , Microtomografía por Rayos X
9.
Cancer Res ; 73(1): 12-8, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23149918

RESUMEN

Inhibition of mTOR is commonly considered a valid target in cancer treatment, but this assertion does not address effects on the immune microenvironment that may be detrimental to cancer treatment. Here we show how administration of the mTOR inhibitor RAD001 (everolimus) results in the occurrence of distant metastasis in a rat model of pancreatic cancer. RAD001 was administered twice weekly for 4.5 weeks as a single treatment or combined with [(177)Lu-DOTA,Tyr3]octreotate ((177)Lu-DOTATATE), where the latter targets the somatostatin receptor-2. The hypothesized synergistic therapeutic effect of RAD001 combined with (177)Lu-DOTATATE was, however, not observed in our experiments. The combination was shown to be less effective than (177)Lu-DOTATATE alone. Unexpectedly, tumor metastasis was observed in 77% of the subjects treated with RAD001, either alone or as part of the combination treatment. This was a striking effect, because metastasis did not occur in control or (177)Lu-DOTATATE-treated animals, including those where the primary tumor was surgically removed. These findings may be important clinically among noncompliant patients or patients that discontinue RAD001 therapy because of adverse effects.


Asunto(s)
Antineoplásicos/efectos adversos , Carcinoma Neuroendocrino/patología , Neoplasias Pancreáticas/patología , Sirolimus/análogos & derivados , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Carcinoma Neuroendocrino/tratamiento farmacológico , Carcinoma Neuroendocrino/inmunología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Everolimus , Humanos , Masculino , Ratones , Ratones Desnudos , Metástasis de la Neoplasia/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/inmunología , Ratas , Ratas Endogámicas Lew , Sirolimus/efectos adversos , Serina-Treonina Quinasas TOR/inmunología
10.
J Nucl Med ; 51(12): 1962-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21078795

RESUMEN

UNLABELLED: High kidney radiation doses during clinical peptide receptor radionuclide therapy (PRRT) with ß-particle-emitting radiolabeled somatostatin analogs will lead to renal failure several months after treatment, urging the coinfusion of the cationic amino acids lysine and arginine to reduce the renal radiation dose. In rat PRRT studies, renal protection by the coadministration of lysine was confirmed by histologic examination of kidney specimens indicating nephrotoxicity. In the current study, we investigated dedicated small-animal SPECT/CT renal imaging in rats to monitor renal function in vivo during follow-up of PRRT, with and without lysine. METHODS: The following 3 groups of rats were imaged using a multipinhole SPECT/CT camera: controls (group 1) and rats at more than 90 d after therapy with 460 MBq (15 µg) of (177)Lu-DOTA-Tyr(3)-octreotate without (group 2) or with (group 3) a 400-mg/kg lysine coinjection as kidney protection (n ≥ 6 per group). At 90 and 140 d after therapy, static kidney scintigraphy was performed at 2 h after injection of 25 MBq of (99m)Tc-dimercaptosuccinic acid ((99m)Tc-DMSA). In addition, dynamic dual-isotope renography was performed using 50 MBq of (111)In-diethylenetriaminepentaacetic acid ((111)In-DTPA) and 50 MBq of (99m)Tc-mercaptoacetyltriglycine ((99m)Tc-MAG3) at 100-120 d after therapy. RESULTS: (111)In-DTPA and (99m)Tc-MAG3 studies revealed a time-activity pattern comparable to those in patients, with a peak at 2-6 min followed by a decline of renal radioactivity. Reduced (111)In-DTPA, (99m)Tc-MAG3, and (99m)Tc-DMSA uptake indicated renal damage in group 2, whereas group 3 showed only a decrease of (99m)Tc-MAG3 peak activity. These results indicating nephrotoxicity in group 2 and renal protection in group 3 correlated with levels of urinary protein and serum creatinine and urea and were confirmed by renal histology. CONCLUSION: Quantitative dynamic dual-isotope imaging using both (111)In-DTPA and (99m)Tc-MAG3 and static (99m)Tc-DMSA imaging in rats is feasible using small-animal SPECT, enabling longitudinal monitoring of renal function. (99m)Tc-MAG3 renography, especially, appears to be a more sensitive marker of tubular function after PRRT than serum chemistry or (99m)Tc-DMSA scintigraphy.


Asunto(s)
Riñón/fisiología , Octreótido/análogos & derivados , Compuestos Organometálicos/uso terapéutico , Radiofármacos/uso terapéutico , Tomografía Computarizada de Emisión de Fotón Único/métodos , Albúminas , Animales , Autorradiografía , Creatinina/sangre , Tasa de Filtración Glomerular , Riñón/diagnóstico por imagen , Enfermedades Renales/prevención & control , Túbulos Renales/fisiología , Lisina/farmacología , Masculino , Octreótido/uso terapéutico , Ácido Pentético/análogos & derivados , Proteinuria/metabolismo , Traumatismos por Radiación/prevención & control , Renografía por Radioisótopo , Ratas , Ratas Endogámicas Lew , Ácido Dimercaptosuccínico de Tecnecio Tc 99m , Tecnecio Tc 99m Mertiatida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA