Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 145(7): 1116-28, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21703453

RESUMEN

Concentration gradients regulate many cell biological and developmental processes. In rod-shaped fission yeast cells, polar cortical gradients of the DYRK family kinase Pom1 couple cell length with mitotic commitment by inhibiting a mitotic inducer positioned at midcell. However, how Pom1 gradients are established is unknown. Here, we show that Tea4, which is normally deposited at cell tips by microtubules, is both necessary and, upon ectopic cortical localization, sufficient to recruit Pom1 to the cell cortex. Pom1 then moves laterally at the plasma membrane, which it binds through a basic region exhibiting direct lipid interaction. Pom1 autophosphorylates in this region to lower lipid affinity and promote membrane release. Tea4 triggers Pom1 plasma membrane association by promoting its dephosphorylation through the protein phosphatase 1 Dis2. We propose that local dephosphorylation induces Pom1 membrane association and nucleates a gradient shaped by the opposing actions of lateral diffusion and autophosphorylation-dependent membrane detachment.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Quinasas/metabolismo , Schizosaccharomyces/metabolismo , Secuencia de Aminoácidos , Ciclo Celular , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Fosforilación , Proteínas Quinasas/química , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia
2.
J Cell Sci ; 127(Pt 9): 2005-16, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24554432

RESUMEN

Cell polarization relies on small GTPases, such as Cdc42, which can break symmetry through self-organizing principles, and landmarks that define the axis of polarity. In fission yeast, microtubules deliver the Tea1-Tea4 complex to mark cell poles for growth, but how this complex activates Cdc42 is unknown. Here, we show that ectopic targeting of Tea4 to cell sides promotes the local activation of Cdc42 and cell growth. This activity requires that Tea4 binds the type I phosphatase (PP1) catalytic subunit Dis2 or Sds21, and ectopic targeting of either catalytic subunit is similarly instructive for growth. The Cdc42 guanine-nucleotide-exchange factor Gef1 and the GTPase-activating protein Rga4 are required for Tea4-PP1-dependent ectopic growth. Gef1 is recruited to ectopic Tea4 and Dis2 locations to promote Cdc42 activation. By contrast, Rga4 is locally excluded by Tea4, and its forced colocalization with Tea4 blocks ectopic growth, indicating that Rga4 must be present, but at sites distinct from Tea4. Thus, a Tea4-PP1 landmark promotes local Cdc42 activation and growth both through Cdc42 GEF recruitment and by creating a local trough in a Cdc42 GAP.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular/genética , Polaridad Celular/fisiología , Proteínas Activadoras de GTPasa/genética , Proteínas Asociadas a Microtúbulos/genética , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Unión Proteica , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteína de Unión al GTP cdc42/genética
3.
Structure ; 17(2): 276-86, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19217398

RESUMEN

Poly(A)-specific ribonuclease (PARN) is a homodimeric, processive, and cap-interacting 3' exoribonuclease that efficiently degrades eukaryotic mRNA poly(A) tails. The crystal structure of a C-terminally truncated PARN in complex with m(7)GpppG reveals that, in one subunit, m(7)GpppG binds to a cavity formed by the RRM domain and the nuclease domain, whereas in the other subunit, it binds almost exclusively to the RRM domain. Importantly, our structural and competition data show that the cap-binding site overlaps with the active site in the nuclease domain. Mutational analysis demonstrates that residues involved in m(7)G recognition are crucial for cap-stimulated deadenylation activity, and those involved in both cap and poly(A) binding are important for catalysis. A modeled PARN, which shows that the RRM domain from one subunit and the R3H domain from the other subunit enclose the active site, provides a structural foundation for further studies to elucidate the mechanism of PARN-mediated deadenylation.


Asunto(s)
Fosfatos de Dinucleósidos/química , Fosfatos de Dinucleósidos/metabolismo , Exorribonucleasas/química , Exorribonucleasas/metabolismo , Animales , Sitios de Unión , Ratones , Modelos Moleculares , Conformación de Ácido Nucleico , Poli A/química , Poli A/metabolismo , Unión Proteica , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Caperuzas de ARN/química , Caperuzas de ARN/metabolismo
4.
J Biol Chem ; 282(45): 32902-11, 2007 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-17785461

RESUMEN

Poly(A)-specific ribonuclease (PARN) is an oligomeric, processive and cap-interacting 3' exoribonuclease that efficiently degrades mRNA poly(A) tails. Here we show that the RNA recognition motif (RRM) of PARN harbors both poly(A) and cap binding properties, suggesting that the RRM plays an important role for the two critical and unique properties that are tightly associated with PARN activity, i.e. recognition and dependence on both the cap structure and poly(A) tail during poly(A) hydrolysis. We show that PARN and its RRM have micromolar affinity to the cap structure by using fluorescence spectroscopy and nanomolar affinity for poly(A) by using filter binding assay. We have identified one tryptophan residue within the RRM that is essential for cap binding but not required for poly(A) binding, suggesting that the cap- and poly(A)-binding sites associated with the RRM are both structurally and functionally separate from each other. RRM is one of the most commonly occurring RNA-binding domains identified so far, suggesting that other RRMs may have both cap and RNA binding properties just as the RRM of PARN.


Asunto(s)
Exorribonucleasas/química , Exorribonucleasas/metabolismo , Poli A/química , Poli A/metabolismo , ARN/química , ARN/metabolismo , Adenina/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Secuencia Conservada , Exorribonucleasas/genética , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA