RESUMEN
Focal brain damage after aneurysmal subarachnoid haemorrhage predominantly results from intracerebral haemorrhage, and early and delayed cerebral ischaemia. The prospective, observational, multicentre, cohort, diagnostic phase III trial, DISCHARGE-1, primarily investigated whether the peak total spreading depolarization-induced depression duration of a recording day during delayed neuromonitoring (delayed depression duration) indicates delayed ipsilateral infarction. Consecutive patients (n = 205) who required neurosurgery were enrolled in six university hospitals from September 2009 to April 2018. Subdural electrodes for electrocorticography were implanted. Participants were excluded on the basis of exclusion criteria, technical problems in data quality, missing neuroimages or patient withdrawal (n = 25). Evaluators were blinded to other measures. Longitudinal MRI, and CT studies if clinically indicated, revealed that 162/180 patients developed focal brain damage during the first 2 weeks. During 4.5 years of cumulative recording, 6777 spreading depolarizations occurred in 161/180 patients and 238 electrographic seizures in 14/180. Ten patients died early; 90/170 developed delayed infarction ipsilateral to the electrodes. Primary objective was to investigate whether a 60-min delayed depression duration cut-off in a 24-h window predicts delayed infarction with >0.60 sensitivity and >0.80 specificity, and to estimate a new cut-off. The 60-min cut-off was too short. Sensitivity was sufficient [= 0.76 (95% confidence interval: 0.65-0.84), P = 0.0014] but specificity was 0.59 (0.47-0.70), i.e. <0.80 (P < 0.0001). Nevertheless, the area under the receiver operating characteristic (AUROC) curve of delayed depression duration was 0.76 (0.69-0.83, P < 0.0001) for delayed infarction and 0.88 (0.81-0.94, P < 0.0001) for delayed ischaemia (reversible delayed neurological deficit or infarction). In secondary analysis, a new 180-min cut-off indicated delayed infarction with a targeted 0.62 sensitivity and 0.83 specificity. In awake patients, the AUROC curve of delayed depression duration was 0.84 (0.70-0.97, P = 0.001) and the prespecified 60-min cut-off showed 0.71 sensitivity and 0.82 specificity for reversible neurological deficits. In multivariate analysis, delayed depression duration (ß = 0.474, P < 0.001), delayed median Glasgow Coma Score (ß = -0.201, P = 0.005) and peak transcranial Doppler (ß = 0.169, P = 0.016) explained 35% of variance in delayed infarction. Another key finding was that spreading depolarization-variables were included in every multiple regression model of early, delayed and total brain damage, patient outcome and death, strongly suggesting that they are an independent biomarker of progressive brain injury. While the 60-min cut-off of cumulative depression in a 24-h window indicated reversible delayed neurological deficit, only a 180-min cut-off indicated new infarction with >0.60 sensitivity and >0.80 specificity. Although spontaneous resolution of the neurological deficit is still possible, we recommend initiating rescue treatment at the 60-min rather than the 180-min cut-off if progression of injury to infarction is to be prevented.
Asunto(s)
Lesiones Encefálicas , Depresión de Propagación Cortical , Hemorragia Subaracnoidea , Lesiones Encefálicas/complicaciones , Infarto Cerebral/complicaciones , Electrocorticografía , Humanos , Estudios Prospectivos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/diagnóstico por imagenRESUMEN
Spreading depolarizations are characterized by abrupt, near-complete breakdown of the transmembrane ion gradients, neuronal oedema, mitochondrial depolarization, glutamate excitotoxicity and activity loss (depression). Spreading depolarization induces either transient hyperperfusion in normal tissue; or hypoperfusion (inverse coupling = spreading ischaemia) in tissue at risk for progressive injury. The concept of the spreading depolarization continuum is critical since many spreading depolarizations have intermediate characteristics, as opposed to the two extremes of spreading depolarization in either severely ischaemic or normal tissue. In animals, the spreading depolarization extreme in ischaemic tissue is characterized by prolonged depolarization durations, in addition to a slow baseline variation termed the negative ultraslow potential. The negative ultraslow potential is initiated by spreading depolarization and similar to the negative direct current (DC) shift of prolonged spreading depolarization, but specifically refers to a negative potential component during progressive recruitment of neurons into cell death in the wake of spreading depolarization. We here first quantified the spreading depolarization-initiated negative ultraslow potential in the electrocorticographic DC range and the activity depression in the alternate current range after middle cerebral artery occlusion in rats. Relevance of these variables to the injury was supported by significant correlations with the cortical infarct volume and neurological outcome after 72 h of survival. We then identified negative ultraslow potential-containing clusters of spreading depolarizations in 11 patients with aneurysmal subarachnoid haemorrhage. The human platinum/iridium-recorded negative ultraslow potential showed a tent-like shape. Its amplitude of 45.0 (39.0, 69.4) mV [median (first, third quartile)] was 6.6 times larger and its duration of 3.7 (3.3, 5.3) h was 34.9 times longer than the negative DC shift of spreading depolarizations in less compromised tissue. Using Generalized Estimating Equations applied to a logistic regression model, we found that negative ultraslow potential displaying electrodes were significantly more likely to overlie a developing ischaemic lesion (90.0%, 27/30) than those not displaying a negative ultraslow potential (0.0%, 0/20) (P = 0.004). Based on serial neuroimages, the lesions under the electrodes developed within a time window of 72 (56, 134) h. The negative ultraslow potential occurred in this time window in 9/10 patients. It was often preceded by a spreading depolarization cluster with increasingly persistent spreading depressions and progressively prolonged DC shifts and spreading ischaemias. During the negative ultraslow potential, spreading ischaemia lasted for 40.0 (28.0, 76.5) min, cerebral blood flow fell from 57 (53, 65) % to 26 (16, 42) % (n = 4) and tissue partial pressure of oxygen from 12.5 (9.2, 15.2) to 3.3 (2.4, 7.4) mmHg (n = 5). Our data suggest that the negative ultraslow potential is the electrophysiological correlate of infarction in human cerebral cortex and a neuromonitoring-detected medical emergency.awy102media15775596049001.
Asunto(s)
Infarto Encefálico/patología , Infarto Encefálico/fisiopatología , Corteza Cerebral/fisiopatología , Depresión de Propagación Cortical/fisiología , Infarto de la Arteria Cerebral Media/patología , Adulto , Animales , Infarto Encefálico/diagnóstico por imagen , Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Modelos Animales de Enfermedad , Electrocorticografía , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/fisiopatología , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Factores de TiempoRESUMEN
OBJECTIVE: Spreading depolarizations (SD) are characterized by breakdown of transmembrane ion gradients and excitotoxicity. Experimentally, N-methyl-D-aspartate receptor (NMDAR) antagonists block a majority of SDs. In many hospitals, the NMDAR antagonist s-ketamine and the GABAA agonist midazolam represent the current second-line combination treatment to sedate patients with devastating cerebral injuries. A pressing clinical question is whether this option should become first-line in sedation-requiring individuals in whom SDs are detected, yet the s-ketamine dose necessary to adequately inhibit SDs is unknown. Moreover, use-dependent tolerance could be a problem for SD inhibition in the clinic. METHODS: We performed a retrospective cohort study of 66 patients with aneurysmal subarachnoid hemorrhage (aSAH) from a prospectively collected database. Thirty-three of 66 patients received s-ketamine during electrocorticographic neuromonitoring of SDs in neurointensive care. The decision to give s-ketamine was dependent on the need for stronger sedation, so it was expected that patients receiving s-ketamine would have a worse clinical outcome. RESULTS: S-ketamine application started 4.2 ± 3.5 days after aSAH. The mean dose was 2.8 ± 1.4 mg/kg body weight (BW)/h and thus higher than the dose recommended for sedation. First, patients were divided according to whether they received s-ketamine at any time or not. No significant difference in SD counts was found between groups (negative binomial model using the SD count per patient as outcome variable, p = 0.288). This most likely resulted from the fact that 368 SDs had already occurred in the s-ketamine group before s-ketamine was given. However, in patients receiving s-ketamine, we found a significant decrease in SD incidence when s-ketamine was started (Poisson model with a random intercept for patient, coefficient - 1.83 (95% confidence intervals - 2.17; - 1.50), p < 0.001; logistic regression model, odds ratio (OR) 0.13 (0.08; 0.19), p < 0.001). Thereafter, data was further divided into low-dose (0.1-2.0 mg/kg BW/h) and high-dose (2.1-7.0 mg/kg/h) segments. High-dose s-ketamine resulted in further significant decrease in SD incidence (Poisson model, - 1.10 (- 1.71; - 0.49), p < 0.001; logistic regression model, OR 0.33 (0.17; 0.63), p < 0.001). There was little evidence of SD tolerance to long-term s-ketamine sedation through 5 days. CONCLUSIONS: These results provide a foundation for a multicenter, neuromonitoring-guided, proof-of-concept trial of ketamine and midazolam as a first-line sedative regime.
Asunto(s)
Ketamina/farmacología , N-Metilaspartato/antagonistas & inhibidores , Hemorragia Subaracnoidea/tratamiento farmacológico , Adulto , Anciano , Estudios de Cohortes , Femenino , Humanos , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/uso terapéutico , Ketamina/uso terapéutico , Tiempo de Internación/estadística & datos numéricos , Masculino , Midazolam/farmacología , Midazolam/uso terapéutico , Persona de Mediana Edad , Fármacos Neuromusculares Despolarizantes/farmacología , Fármacos Neuromusculares Despolarizantes/uso terapéutico , Oportunidad Relativa , Estudios Retrospectivos , Hemorragia Subaracnoidea/fisiopatologíaRESUMEN
See Ghoshal and Claassen (doi:10.1093/brain/awx226) for a scientific commentary on this article. Early cortical infarcts are common in poor-grade patients after aneurysmal subarachnoid haemorrhage. There are no animal models of these lesions and mechanisms are unknown, although mass cortical spreading depolarizations are hypothesized as a requisite mechanism and clinical marker of infarct development. Here we studied acute sequelae of subarachnoid haemorrhage in the gyrencephalic brain of propofol-anaesthetized juvenile swine using subdural electrode strips (electrocorticography) and intraparenchymal neuromonitoring probes. Subarachnoid infusion of 12 ml of fresh blood at 200 µl/min over cortical sulci caused clusters of spreading depolarizations (count range: 1234) in 7/17 animals in the ipsilateral but not contralateral hemisphere in 6 h of monitoring, without meaningful changes in other variables. Spreading depolarization clusters were associated with formation of sulcal clots (P < 0.01), a high likelihood of adjacent cortical infarcts (5/7 versus 2/10, P < 0.06), and upregulation of cyclooxygenase-2 in ipsilateral cortex remote from clots/infarcts. In a second cohort, infusion of 1 ml of clotted blood into a sulcus caused spreading depolarizations in 5/6 animals (count range: 420 in 6 h) and persistent thick clots with patchy or extensive infarction of circumscribed cortex in all animals. Infarcts were significantly larger after blood clot infusion compared to mass effect controls using fibrin clots of equal volume. Haematoxylin and eosin staining of infarcts showed well demarcated zones of oedema and hypoxic-ischaemic neuronal injury, consistent with acute infarction. The association of spreading depolarizations with early brain injury was then investigated in 23 patients [14 female; age (median, quartiles): 57 years (47, 63)] after repair of ruptured anterior communicating artery aneurysms by clip ligation (n = 14) or coiling (n = 9). Frontal electrocorticography [duration: 54 h (34, 66)] from subdural electrode strips was analysed over Days 03 after initial haemorrhage and magnetic resonance imaging studies were performed at â¼ 2448 h after aneurysm treatment. Patients with frontal infarcts only and those with frontal infarcts and/or intracerebral haemorrhage were both significantly more likely to have spreading depolarizations (6/7 and 10/12, respectively) than those without frontal brain lesions (1/11, P's < 0.05). These results suggest that subarachnoid clots in sulci/fissures are sufficient to induce spreading depolarizations and acute infarction in adjacent cortex. We hypothesize that the cellular toxicity and vasoconstrictive effects of depolarizations act in synergy with direct ischaemic effects of haemorrhage as mechanisms of infarct development. Results further validate spreading depolarizations as a clinical marker of early brain injury and establish a clinically relevant model to investigate causal pathologic sequences and potential therapeutic interventions.
Asunto(s)
Infarto Cerebral/diagnóstico por imagen , Infarto Cerebral/fisiopatología , Depresión de Propagación Cortical/fisiología , Hemorragia Subaracnoidea/diagnóstico por imagen , Hemorragia Subaracnoidea/fisiopatología , Adulto , Anciano , Animales , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología , Electrocorticografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Estudios Retrospectivos , Porcinos , Adulto JovenRESUMEN
While subarachnoid hemorrhage is the second most common hemorrhagic stroke in epidemiologic studies, the recent DISCHARGE-1 trial has shown that in reality, three-quarters of focal brain damage after subarachnoid hemorrhage is ischemic. Two-fifths of these ischemic infarctions occur early and three-fifths are delayed. The vast majority are cortical infarcts whose pathomorphology corresponds to anemic infarcts. Therefore, we propose in this review that subarachnoid hemorrhage as an ischemic-hemorrhagic stroke is rather a third, separate entity in addition to purely ischemic or hemorrhagic strokes. Cumulative focal brain damage, determined by neuroimaging after the first 2 weeks, is the strongest known predictor of patient outcome half a year after the initial hemorrhage. Because of the unique ability to implant neuromonitoring probes at the brain surface before stroke onset and to perform longitudinal MRI scans before and after stroke, delayed cerebral ischemia is currently the stroke variant in humans whose pathophysiological details are by far the best characterized. Optoelectrodes located directly over newly developing delayed infarcts have shown that, as mechanistic correlates of infarct development, spreading depolarizations trigger (1) spreading ischemia, (2) severe hypoxia, (3) persistent activity depression, and (4) transition from clustered spreading depolarizations to a negative ultraslow potential. Furthermore, traumatic brain injury and subarachnoid hemorrhage are the second and third most common etiologies of brain death during continued systemic circulation. Here, we use examples to illustrate that although the pathophysiological cascades associated with brain death are global, they closely resemble the local cascades associated with the development of delayed cerebral infarcts.
RESUMEN
In DISCHARGE-1, a recent Phase III diagnostic trial in aneurysmal subarachnoid haemorrhage patients, spreading depolarization variables were found to be an independent real-time biomarker of delayed cerebral ischaemia. We here investigated based on prospectively collected data from DISCHARGE-1 whether delayed infarcts in the anterior, middle, or posterior cerebral artery territories correlate with (i) extravascular blood volumes; (ii) predefined spreading depolarization variables, or proximal vasospasm assessed by either (iii) digital subtraction angiography or (iv) transcranial Doppler-sonography; and whether spreading depolarizations and/or vasospasm are mediators between extravascular blood and delayed infarcts. Relationships between variable groups were analysed using Spearman correlations in 136 patients. Thereafter, principal component analyses were performed for each variable group. Obtained components were included in path models with a priori defined structure. In the first path model, we only included spreading depolarization variables, as our primary interest was to investigate spreading depolarizations. Standardised path coefficients were 0.22 for the path from extravascular bloodcomponent to depolarizationcomponent (P = 0.010); and 0.44 for the path from depolarizationcomponent to the first principal component of delayed infarct volume (P < 0.001); but only 0.07 for the direct path from bloodcomponent to delayed infarctcomponent (P = 0.36). Thus, the role of spreading depolarizations as a mediator between blood and delayed infarcts was confirmed. In the principal component analysis of extravascular blood volume, intraventricular haemorrhage was not represented in the first component. Therefore, based on the correlation analyses, we also constructed another path model with bloodcomponent without intraventricular haemorrhage as first and intraventricular haemorrhage as second extrinsic variable. We found two paths, one from (subarachnoid) bloodcomponent to delayed infarctcomponent with depolarizationcomponent as mediator (path coefficients from bloodcomponent to depolarizationcomponent = 0.23, P = 0.03; path coefficients from depolarizationcomponent to delayed infarctcomponent = 0.29, P = 0.002), and one from intraventricular haemorrhage to delayed infarctcomponent with angiographic vasospasmcomponent as mediator variable (path coefficients from intraventricular haemorrhage to vasospasmcomponent = 0.24, P = 0.03; path coefficients from vasospasmcomponent to delayed infarctcomponent = 0.35, P < 0.001). Human autopsy studies shaped the hypothesis that blood clots on the cortex surface suffice to cause delayed infarcts beneath the clots. Experimentally, clot-released factors induce cortical spreading depolarizations that trigger (i) neuronal cytotoxic oedema and (ii) spreading ischaemia. The statistical mediator role of spreading depolarization variables between subarachnoid blood volume and delayed infarct volume supports this pathogenetic concept. We did not find that angiographic vasospasm triggers spreading depolarizations, but angiographic vasospasm contributed to delayed infarct volume. This could possibly result from enhancement of spreading depolarization-induced spreading ischaemia by reduced upstream blood supply.
RESUMEN
Huntington's disease and subcortical vascular dementia display similar dementing features, shaped by different degrees of striatal atrophy, deep white matter degeneration and tau pathology. To investigate the hypothesis that Huntington's disease transcriptomic hallmarks may provide a window into potential protective genes upregulated during brain acute and subacute ischemia, we compared RNA sequencing signatures in the most affected brain areas of 2 widely used experimental mouse models: Huntington's disease, (R6/2, striatum and cortex and Q175, hippocampus) and brain ischemia-subcortical vascular dementia (BCCAS, striatum, cortex and hippocampus). We identified a cluster of 55 shared genes significantly differentially regulated in both models and we screened these in 2 different mouse models of Alzheimer's disease, and 96 early-onset familial and apparently sporadic small vessel ischemic disease patients. Our data support the prevalent role of transcriptional regulation upon genetic coding variability of known neuroprotective genes (Egr2, Fos, Ptgs2, Itga5, Cdkn1a, Gsn, Npas4, Btg2, Cebpb) and provide a list of potential additional ones likely implicated in different dementing disorders and worth further investigation.
Asunto(s)
Isquemia Encefálica/genética , Ciclooxigenasa 2/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Enfermedad de Huntington/genética , Proteínas Proto-Oncogénicas c-fos/genética , Transcriptoma/genética , Animales , Encéfalo/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Demencia Vascular/genética , Demencia Vascular/patología , Modelos Animales de Enfermedad , Enfermedad de Huntington/patología , Integrinas/genética , Masculino , Ratones Endogámicos C57BL , Degeneración Nerviosa/genética , Degeneración Nerviosa/patologíaRESUMEN
Spreading depolarizations (SDs) are characterized by near-complete breakdown of the transmembrane ion gradients, neuronal oedema and activity loss (=depression). The SD extreme in ischemic tissue, termed 'terminal SD,' shows prolonged depolarization, in addition to a slow baseline variation called 'negative ultraslow potential' (NUP). The NUP is the largest bioelectrical signal ever recorded from the human brain and is thought to reflect the progressive recruitment of neurons into death in the wake of SD. However, it is unclear whether the NUP is a field potential or results from contaminating sensitivities of platinum electrodes. In contrast to Ag/AgCl-based electrodes in animals, platinum/iridium electrodes are the gold standard for intracranial direct current (DC) recordings in humans. Here, we investigated the full continuum including short-lasting SDs under normoxia, long-lasting SDs under systemic hypoxia, and terminal SD under severe global ischemia using platinum/iridium electrodes in rats to better understand their recording characteristics. Sensitivities for detecting SDs or NUPs were 100% for both electrode types. Nonetheless, the platinum/iridium-recorded NUP was 10 times smaller in rats than humans. The SD continuum was then further investigated by comparing subdural platinum/iridium and epidural titanium peg electrodes in patients. In seven patients with either aneurysmal subarachnoid hemorrhage or malignant hemispheric stroke, two epidural peg electrodes were placed 10 mm from a subdural strip. We found that 31/67 SDs (46%) on the subdural strip were also detected epidurally. SDs that had longer negative DC shifts and spread more widely across the subdural strip were more likely to be observed in epidural recordings. One patient displayed an SD-initiated NUP while undergoing brain death despite continued circulatory function. The NUP's amplitude was -150 mV subdurally and -67 mV epidurally. This suggests that the human NUP is a bioelectrical field potential rather than an artifact of electrode sensitivity to other factors, since the dura separates the epidural from the subdural compartment and the epidural microenvironment was unlikely changed, given that ventilation, arterial pressure and peripheral oxygen saturation remained constant during the NUP. Our data provide further evidence for the clinical value of invasive electrocorticographic monitoring, highlighting important possibilities as well as limitations of less invasive recording techniques.
RESUMEN
BACKGROUND: Disease progression and delayed neurological complications are common after aneurysmal subarachnoid hemorrhage (aSAH). We explored the potential of quantitative blood-brain barrier (BBB) imaging to predict disease progression and neurological outcome. METHODS: Data were collected as part of the Co-Operative Studies of Brain Injury Depolarizations (COSBID). We analyzed retrospectively, blinded and semi-automatically magnetic resonance images from 124 aSAH patients scanned at 4 time points (24-48â¯h, 6-8â¯days, 12-15â¯days and 6-12â¯months) after the initial hemorrhage. Volume of brain with apparent pathology and/or BBB dysfunction (BBBD), subarachnoid space and lateral ventricles were measured. Neurological status on admission was assessed using the World Federation of Neurosurgical Societies and Rosen-Macdonald scores. Outcome at ≥6â¯months was assessed using the extended Glasgow outcome scale and disease course (progressive or non-progressive based on imaging-detected loss of normal brain tissue in consecutive scans). Logistic regression was used to define biomarkers that best predict outcomes. Receiver operating characteristic analysis was performed to assess accuracy of outcome prediction models. FINDINGS: In the present cohort, 63% of patients had progressive and 37% non-progressive disease course. Progressive course was associated with worse outcome at ≥6â¯months (sensitivity of 98% and specificity of 97%). Brain volume with BBBD was significantly larger in patients with progressive course already 24-48â¯h after admission (2.23 (1.23-3.17) folds, median with 95%CI), and persisted at all time points. The highest probability of a BBB-disrupted voxel to become pathological was found at a distance of ≤1â¯cm from the brain with apparent pathology (0·284 (0·122-0·594), pâ¯<â¯0·001, median with 95%CI). A multivariate logistic regression model revealed power for BBBD in combination with RMS at 24-48â¯h in predicting outcome (ROC area under the curveâ¯=â¯0·829, pâ¯<â¯0·001). INTERPRETATION: We suggest that early identification of BBBD may serve as a key predictive biomarker for neurological outcome in aSAH. FUND: Dr. Dreier was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) (DFG DR 323/5-1 and DFG DR 323/10-1), the Bundesministerium für Bildung und Forschung (BMBF) Center for Stroke Research Berlin 01 EO 0801 and FP7 no 602150 CENTER-TBI. Dr. Friedman was supported by grants from Israel Science Foundation and Canada Institute for Health Research (CIHR). Dr. Friedman was supported by grants from European Union's Seventh Framework Program (FP7/2007-2013; grant #602102).
Asunto(s)
Barrera Hematoencefálica/metabolismo , Aneurisma Intracraneal/complicaciones , Hemorragia Subaracnoidea/etiología , Hemorragia Subaracnoidea/metabolismo , Adulto , Anciano , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Angiografía por Tomografía Computarizada , Progresión de la Enfermedad , Diagnóstico Precoz , Femenino , Escala de Consecuencias de Glasgow , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Evaluación del Resultado de la Atención al Paciente , Pronóstico , Curva ROC , Reproducibilidad de los Resultados , Hemorragia Subaracnoidea/diagnóstico , Adulto JovenRESUMEN
OBJECTIVE: To investigate whether spreading depolarization (SD)-related variables at 2 different time windows (days 1-4 and 5-8) after aneurysmal subarachnoid hemorrhage (aSAH) correlate with the stereologically determined volume of early focal brain injury on the preinterventional CT scan. METHODS: In this observational multicenter study of 54 patients, volumes of unaffected brain tissue, ventricles, cerebellum, aSAH, intracerebral hemorrhage, and focal parenchymal hypodensity were stereologically estimated. Patients were electrocorticographically monitored using subdural electrodes for 81.8 hours (median) (interquartile range: 70.6-90.5) during days 1-4 (n = 54) and for 75.9 (59.5-88.7) hours during days 5-8 (n = 51). Peak total SD-induced depression duration of a recording day (PTDDD) and peak numbers of (1) SDs, (2) isoelectric SDs, and (3) spreading depressions of a recording day were determined following the recommendations of the Co-Operative Studies on Brain Injury Depolarizations. RESULTS: Thirty-three of 37 patients with early focal brain injury (intracerebral hemorrhage and/or hypodensity) in contrast to 7 of 17 without displayed SDs during days 1-4 (sensitivity: 89% [95% confidence interval, CI: 75%-97%], specificity: 59% [CI: 33%-82%], positive predictive value: 83% [CI: 67%-93%], negative predictive value: 71% [CI: 42%-92%], Fisher exact test, p < 0.001). All 4 SD-related variables during days 1-4 significantly correlated with the volume of early focal brain injury (Spearman rank order correlations). A multiple ordinal regression analysis identified the PTDDD as the most important predictor. CONCLUSIONS: Our findings suggest that early focal brain injury after aSAH is associated with early SDs and further support the notion that SDs are a biomarker of focal brain lesions.
Asunto(s)
Lesiones Encefálicas/etiología , Depresión de Propagación Cortical/fisiología , Hemorragia Subaracnoidea/complicaciones , Anciano , Electrocorticografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Hemorragia Subaracnoidea/diagnóstico por imagen , Factores de Tiempo , Tomógrafos Computarizados por Rayos XRESUMEN
Spreading depolarization (SD) is a phenomenon of various cerebral gray matter structures that only occurs under pathological conditions. In the present paper, we summarize the evidence from several decades of research that SD and cytotoxic edema in these structures are largely overlapping terms. SD/cytotoxic edema is a toxic state that - albeit initially reversible - leads eventually to cellular death when it is persistent. Both hemorrhagic and ischemic stroke are among the most prominent causes of SD/cytotoxic edema. SD/cytotoxic edema is the principal mechanism that mediates neuronal death in these conditions. This applies to gray matter structures in both the ischemic core and the penumbra. SD/cytotoxic edema is often a single terminal event in the core whereas, in the penumbra, a cluster of repetitive prolonged SDs is typical. SD/cytotoxic edema also propagates widely into healthy surrounding tissue as short-lasting, relatively harmless events so that regional electrocorticographic monitoring affords even remote detection of ischemic zones. Ischemia cannot only cause SD/cytotoxic edema but it can also be its consequence through inverse neurovascular coupling. Under this condition, ischemia does not start simultaneously in different regions but spreads in the tissue driven by SD/cytotoxic edema-induced microvascular constriction (= spreading ischemia). Spreading ischemia prolongs SD/cytotoxic edema. Thus, it increases the likelihood for the transition from SD/cytotoxic edema into cellular death. Vasogenic edema is the other major type of cerebral edema with relevance to ischemic stroke. It results from opening of the blood-brain barrier. SD/cytotoxic edema and vasogenic edema are distinct processes with important mutual interactions. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Asunto(s)
Edema Encefálico/etiología , Depresión de Propagación Cortical/fisiología , Sustancia Gris/fisiopatología , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Animales , Sustancia Gris/patología , HumanosRESUMEN
In many cerebral grey matter structures including the neocortex, spreading depolarization (SD) is the principal mechanism of the near-complete breakdown of the transcellular ion gradients with abrupt water influx into neurons. Accordingly, SDs are abundantly recorded in patients with traumatic brain injury, spontaneous intracerebral hemorrhage, aneurysmal subarachnoid hemorrhage (aSAH) and malignant hemispheric stroke using subdural electrode strips. SD is observed as a large slow potential change, spreading in the cortex at velocities between 2 and 9 mm/min. Velocity and SD susceptibility typically correlate positively in various animal models. In patients monitored in neurocritical care, the Co-Operative Studies on Brain Injury Depolarizations (COSBID) recommends several variables to quantify SD occurrence and susceptibility, although accurate measures of SD velocity have not been possible. Therefore, we developed an algorithm to estimate SD velocities based on reconstructing SD trajectories of the wave-front's curvature center from magnetic resonance imaging scans and time-of-SD-arrival-differences between subdural electrode pairs. We then correlated variables indicating SD susceptibility with algorithm-estimated SD velocities in twelve aSAH patients. Highly significant correlations supported the algorithm's validity. The trajectory search failed significantly more often for SDs recorded directly over emerging focal brain lesions suggesting in humans similar to animals that the complexity of SD propagation paths increase in tissue undergoing injury.