Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 6(48): 32618-32630, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34901610

RESUMEN

Models of fluid flow are used to improve the efficiency of oil and gas extraction and to estimate the storage and leakage of carbon dioxide in geologic reservoirs. Therefore, a quantitative understanding of key parameters of rock-fluid interactions, such as contact angles, wetting, and the rate of spontaneous imbibition, is necessary if these models are to predict reservoir behavior accurately. In this study, aqueous fluid imbibition rates were measured in fractures in samples of the Eagle Ford Shale using neutron imaging. Several liquids, including pure water and aqueous solutions containing sodium bicarbonate and sodium chloride, were used to determine the impact of solution chemistry on uptake rates. Uptake rate analysis provided dynamic contact angles for the Eagle Ford Shale that ranged from 51 to 90° using the Schwiebert-Leong equation, suggesting moderately hydrophilic mineralogy. When corrected for hydrostatic pressure, the average contact angle was calculated as 76 ± 7°, with higher values at the fracture inlet. Differences in imbibition arising from differing fracture widths, physical liquid properties, and wetting front height were investigated. For example, bicarbonate-contacted samples had average contact angles that varied between 62 ± 10° and ∼84 ± 6° as the fluid rose in the column, likely reflecting a convergence-divergence structure within the fracture. Secondary imbibitions into the same samples showed a much more rapid uptake for water and sodium chloride solutions that suggested alteration of the clay in contact with the solution producing a water-wet environment. The same effect was not observed for sodium bicarbonate, which suggested that the bicarbonate ion prevented shale hydration. This study demonstrates how the imbibition rate measured by neutron imaging can be used to determine contact angles for solutions in contact with shale or other materials and that wetting properties can vary on a relatively fine scale during imbibition, requiring detailed descriptions of wetting for accurate reservoir modeling.

2.
J Colloid Interface Sci ; 495: 94-101, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28189114

RESUMEN

Olivine is a relatively common family of silicate minerals in many terrestrial and extraterrestrial environments, and is also useful as a refractory ceramic. A capability to synthesize fine particles of olivine will enable additional studies on surface reactivity under geologically relevant conditions. This paper presents a method for the synthesis of nanocrystalline samples of the magnesium end-member, forsterite (Mg2SiO4) in relatively large batches (15-20g) using a sol-gel/surfactant approach. Magnesium methoxide and tetraethylorthosilicate (TEOS) are refluxed in a toluene/methanol mixture using dodecylamine as a surfactant and tert-butyl amine and water as hydrolysis agents. This material is then cleaned and dried, and fired at 800°C. Post-firing reaction in hydrogen peroxide was used to remove residual organic surfactant. X-ray diffraction showed that a pure material resulted, with a BET surface area of up to 76.6m2/g. The results of a preliminary attempt to use this approach to synthesize nano-scale orthopyroxene (MgSiO3) are also reported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA