Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 118(7): 073601, 2017 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-28256845

RESUMEN

We present a transportable optical clock (TOC) with ^{87}Sr. Its complete characterization against a stationary lattice clock resulted in a systematic uncertainty of 7.4×10^{-17}, which is currently limited by the statistics of the determination of the residual lattice light shift, and an instability of 1.3×10^{-15}/sqrt[τ] with an averaging time τ in seconds. Measurements confirm that the systematic uncertainty can be reduced to below the design goal of 1×10^{-17}. To our knowledge, these are the best uncertainties and instabilities reported for any transportable clock to date. For autonomous operation, the TOC has been installed in an air-conditioned car trailer. It is suitable for chronometric leveling with submeter resolution as well as for intercontinental cross-linking of optical clocks, which is essential for a redefinition of the International System of Units (SI) second. In addition, the TOC will be used for high precision experiments for fundamental science that are commonly tied to precise frequency measurements and its development is an important step to space-borne optical clocks.

2.
Phys Rev Lett ; 116(11): 113001, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-27035299

RESUMEN

We observe interaction-induced broadening of the two-photon 5s-18s transition in ^{87}Rb atoms trapped in a 3D optical lattice. The measured linewidth increases by nearly 2 orders of magnitude with increasing atomic density and excitation strength, with corresponding suppression of resonant scattering and enhancement of off-resonant scattering. We attribute the increased linewidth to resonant dipole-dipole interactions of 18s atoms with blackbody induced population in nearby np states. Over a range of initial atomic densities and excitation strengths, the transition width is described by a single function of the steady-state density of Rydberg atoms, and the observed resonant excitation rate corresponds to that of a two-level system with the measured, rather than natural, linewidth. The broadening mechanism observed here is likely to have negative implications for many proposals with coherently interacting Rydberg atoms.

3.
Phys Rev Lett ; 103(26): 265301, 2009 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-20366319

RESUMEN

One of the principal signatures of superfluidity is the frictionless flow of a superfluid through another substance. Here, we study the flow of a Bose-Einstein condensate through a thermal cloud and study its damping for different harmonic confinements and temperatures. The damping rates close to the collisionless regime are found to be in good agreement with Landau damping and become smaller for more homogeneous systems. In the hydrodynamic regime, we observe additional damping due to collisions, and we discuss the implications of these findings for superfluidity in this system.

4.
Science ; 348(6234): 540-4, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25931552

RESUMEN

The interplay of magnetic exchange interactions and tunneling underlies many complex quantum phenomena observed in real materials. We study nonequilibrium magnetization dynamics in an extended two-dimensional (2D) system by loading effective spin-1/2 bosons into a spin-dependent optical lattice and use the lattice to separately control the resonance conditions for tunneling and superexchange. After preparing a nonequilibrium antiferromagnetically ordered state, we observe relaxation dynamics governed by two well-separated rates, which scale with the parameters associated with superexchange and tunneling. With tunneling off-resonantly suppressed, we observe superexchange-dominated dynamics over two orders of magnitude in magnetic coupling strength. Our experiment will serve as a benchmark for future theoretical work as the detailed dynamics of this 2D, strongly correlated, and far-from-equilibrium quantum system remain out of reach of current computational techniques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA