Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
2.
Chem Sci ; 15(28): 10784-10793, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39027300

RESUMEN

We report metal-free organic 1,2-diketones that exhibit fast and highly efficient room-temperature phosphorescence (RTP) with high colour purity under various conditions, including solutions. RTP quantum yields reached 38.2% in solution under Ar, 54% in a polymer matrix in air, and 50% in crystalline solids in air. Moreover, the narrowband RTP consistently dominated the steady-state emission, regardless of the molecular environment. Detailed mechanistic studies using ultrafast spectroscopy, single-crystal X-ray structure analysis, and theoretical calculations revealed picosecond intersystem crossing (ISC) followed by RTP from a planar conformation. Notably, the phosphorescence rate constant k p was unambiguously established as ∼5000 s-1, which is comparable to that of platinum porphyrins (representative heavy-metal phosphor). This inherently large k p enabled the high-efficiency RTP across diverse molecular environments, thus complementing the streamlined persistent RTP approach. The mechanism behind the photofunction has been elucidated as follows: (1) the large k p is due to efficient intensity borrowing of the T1 state from the bright S3 state, (2) the rapid ISC occurs from the S1 to the T3 state because these states are nearly isoenergetic and have a considerable spin-orbit coupling, and (3) the narrowband emission results from the minimal geometry change between the T1 and S0 states. Such mechanistic understanding based on molecular orbitals, as well as the structure-RTP property relationship study, highlighted design principles embodied by the diketone planar conformer. The fast RTP strategy enables development of organic phosphors with emissions independent of environmental conditions, thereby offering alternatives to precious-metal based phosphors.

3.
Chem Sci ; 14(20): 5302-5308, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37234907

RESUMEN

The phenomenon of crystal melting by light irradiation, known as photo-induced crystal-to-liquid transition (PCLT), can dramatically change material properties with high spatiotemporal resolution. However, the diversity of compounds exhibiting PCLT is severely limited, which hampers further functionalisation of PCLT-active materials and the fundamental understandings of PCLT. Here, we report on heteroaromatic 1,2-diketones as the new class of PCLT-active compounds, whose PCLT is based on conformational isomerisation. In particular, one of the diketones demonstrates luminescence evolution prior to crystal melting. Thus, the diketone crystal exhibits dynamic multistep changes in the luminescence colour and intensity during continuous ultraviolet irradiation. This luminescence evolution can be ascribed to the sequential PCLT processes of crystal loosening and conformational isomerisation before macroscopic melting. Single-crystal X-ray structural analysis, thermal analysis, and theoretical calculations of two PCLT-active and one inactive diketones revealed weaker intermolecular interactions for the PCLT-active crystals. In particular, we observed a characteristic packing motif for the PCLT-active crystals, consisting of an ordered layer of diketone core and a disordered layer of triisopropylsilyl moieties. Our results demonstrate the integration of photofunction with PCLT, provide fundamental insights into the melting process of molecular crystals, and will diversify the molecular design of PCLT-active materials beyond classical photochromic scaffolds such as azobenzenes.

4.
Chem Sci ; 12(43): 14363-14368, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34880986

RESUMEN

Achieving organic room-temperature phosphorescence (RTP) in a solvent-free liquid state is a challenging task because the liquid state provides a less rigid environment than the crystal. Here, we report that an unsymmetrical heteroaromatic 1,2-diketone forms an organic RTP liquid. This diketone exists as a kinetically stable supercooled liquid, which resists crystallisation even under pricking or shearing stresses, and remains as a liquid for several months. The unsymmetrical diketone core is flexible, with eight distinct conformers possible, which prevents nucleation and growth for the liquid-solid transition. Interestingly, the thermodynamically stable crystalline solid-state was non-emissive. Thus, the RTP of the diketone was found to be liquiefaction-induced. Single-crystal X-ray structure analysis revealed that the diminished RTP of the crystal is due to insufficient intermolecular interactions and restricted access to an emissive conformer. Our work demonstrates that flexible unsymmetrical skeletons are promising motifs for bistable liquid-solid molecular systems, which are useful for the further development of stimuli-responsive materials that use phase transitions.

5.
Chem Commun (Camb) ; 56(50): 6810-6813, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32432246

RESUMEN

The room-temperature phosphorescence (RTP) of metal-free organic crystals is normally quenched by mechanical stimulation. Herein, we demonstrate the opposite mechanoresponse of turn-on RTP. A desymmetrization of a C2-symmetric 1,2-diketone creates space for molecular motion in the crystal, quenching the RTP from the crystal while maintaining that from the amorphous solid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA