Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Hered ; 105(3): 345-53, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24622972

RESUMEN

We studied the distribution of the mitochondrial DNA haplotypes and microsatellite genotypes at 8 loci in 102 gray wolves, 57 livestock guarding dogs, and 9 mongrel dogs from Georgia (Caucasus). Most of the studied dogs had mitochondrial haplotypes clustered with presumably East Asian dog lineages, and most of the studied wolves had the haplotypes clustered with European wolves, but 20% of wolves and 37% of dogs shared the same mitochondrial haplotypes. Bayesian inference with STRUCTURE software suggested that more than 13% of the studied wolves had detectable dog ancestry and more than 10% of the dogs had detectable wolf ancestry. About 2-3% of the sampled wolves and dogs were identified, with a high probability, as first-generation hybrids. These results were supported by the relatedness analysis, which showed that 10% of wolves and 20% of dogs had closest relatives from an opposite group. The results of the study suggest that wolf-dog hybridization is a common event in the areas where large livestock guarding dogs are held in a traditional way, and that gene flow between dogs and gray wolves was an important force influencing gene pool of dogs for millennia since early domestication events. This process may have been terminated 1) in areas outside the natural range of gray wolves and 2) since very recent time, when humans started to more tightly control contacts of purebred dogs.


Asunto(s)
ADN Mitocondrial/genética , Perros/genética , Flujo Génico/genética , Lobos/genética , Animales , Secuencia de Bases , Variación Genética , Genética de Población , Georgia (República) , Haplotipos/genética , Hibridación Genética , Repeticiones de Microsatélite/genética , Linaje , Filogenia , Filogeografía , Análisis de Secuencia de ADN
2.
Evol Appl ; 14(10): 2433-2456, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34745336

RESUMEN

Introgressive hybridization between domestic animals and their wild relatives is an indirect form of human-induced evolution, altering gene pools and phenotypic traits of wild and domestic populations. Although this process is well documented in many taxa, its evolutionary consequences are poorly understood. In this study, we assess introgression patterns in admixed populations of Eurasian wolves and free-ranging domestic dogs (FRDs), identifying chromosomal regions with significantly overrepresented hybrid ancestry and assessing whether genes located within these regions show signatures of selection. Although the dog admixture proportion in West Eurasian wolves (2.7%) was greater than the wolf admixture proportion in FRDs (0.75%), the number and average length of chromosomal blocks showing significant overrepresentation of hybrid ancestry were smaller in wolves than FRDs. In wolves, 6% of genes located within these blocks showed signatures of positive selection compared to 23% in FRDs. We found that introgression from wolves may provide a considerable adaptive advantage to FRDs, counterbalancing some of the negative effects of domestication, which can include reduced genetic diversity and excessive tameness. In wolves, introgression from FRDs is mostly driven by drift, with a small number of positively selected genes associated with brain function and behaviour. The predominance of drift may be the consequence of small effective size of wolf populations, which reduces efficiency of selection for weakly advantageous or against weakly disadvantageous introgressed variants. Small wolf population sizes result largely from human-induced habitat loss and hunting, thus linking introgression rates to anthropogenic processes. Our results imply that maintenance of large population sizes should be an important element of wolf management strategies aimed at reducing introgression rates of dog-derived variants.

3.
Sci Rep ; 9(1): 17328, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31757998

RESUMEN

The evolutionary relationships between extinct and extant lineages provide important insight into species' response to environmental change. The grey wolf is among the few Holarctic large carnivores that survived the Late Pleistocene megafaunal extinctions, responding to that period's profound environmental changes with loss of distinct lineages and phylogeographic shifts, and undergoing domestication. We reconstructed global genome-wide phylogeographic patterns in modern wolves, including previously underrepresented Siberian wolves, and assessed their evolutionary relationships with a previously genotyped wolf from Taimyr, Siberia, dated at 35 Kya. The inferred phylogeographic structure was affected by admixture with dogs, coyotes and golden jackals, stressing the importance of accounting for this process in phylogeographic studies. The Taimyr lineage was distinct from modern Siberian wolves and constituted a sister lineage of modern Eurasian wolves and domestic dogs, with an ambiguous position relative to North American wolves. We detected gene flow from the Taimyr lineage to Arctic dog breeds, but population clustering methods indicated closer similarity of the Taimyr wolf to modern wolves than dogs, implying complex post-divergence relationships among these lineages. Our study shows that introgression from ecologically diverse con-specific and con-generic populations was common in wolves' evolutionary history, and could have facilitated their adaptation to environmental change.


Asunto(s)
Secuenciación Completa del Genoma/veterinaria , Lobos/clasificación , Lobos/genética , Animales , Regiones Árticas , Bases de Datos Genéticas , Evolución Molecular , Flujo Génico , Desequilibrio de Ligamiento , Filogenia , Filogeografía , Siberia
4.
PLoS One ; 10(11): e0141236, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26540195

RESUMEN

In the first continent-wide study of the golden jackal (Canis aureus), we characterised its population genetic structure and attempted to identify the origin of European populations. This provided a unique insight into genetic characteristics of a native carnivore population with rapid large-scale expansion. We analysed 15 microsatellite markers and a 406 base-pair fragment of the mitochondrial control region. Bayesian-based and principal components methods were applied to evaluate whether the geographical grouping of samples corresponded with genetic groups. Our analysis revealed low levels of genetic diversity, reflecting the unique history of the golden jackal among Europe's native carnivores. The results suggest ongoing gene flow between south-eastern Europe and the Caucasus, with both contributing to the Baltic population, which appeared only recently. The population from the Peloponnese Peninsula in southern Greece forms a common genetic cluster with samples from south-eastern Europe (ΔK approach in STRUCTURE, Principal Components Analysis [PCA]), although the results based on BAPS and the estimated likelihood in STRUCTURE indicate that Peloponnesian jackals may represent a distinct population. Moreover, analyses of population structure also suggest either genetic distinctiveness of the island population from Samos near the coast of Asia Minor (BAPS, most STRUCTURE, PCA), or possibly its connection with the Caucasus population (one analysis in STRUCTURE). We speculate from our results that ancient Mediterranean jackal populations have persisted to the present day, and have merged with jackals colonising from Asia. These data also suggest that new populations of the golden jackal may be founded by long-distance dispersal, and thus should not be treated as an invasive alien species, i.e. an organism that is "non-native to an ecosystem, and which may cause economic or environmental harm or adversely affect human health". These insights into the genetic structure and ancestry of Baltic jackals have important implications for management and conservation of jackals in Europe. The golden jackal is listed as an Annex V species in the EU Habitats Directive and as such, considering also the results presented here, should be legally protected in all EU member states.


Asunto(s)
Chacales/genética , Animales , Asia , ADN Mitocondrial/genética , Demografía , Europa (Continente) , Femenino , Variación Genética/genética , Haplotipos/genética , Masculino , Repeticiones de Microsatélite/genética , Biología Molecular , Crecimiento Demográfico
5.
PLoS One ; 9(4): e93828, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24714198

RESUMEN

Despite continuous historical distribution of the grey wolf (Canis lupus) throughout Eurasia, the species displays considerable morphological differentiation that resulted in delimitation of a number of subspecies. However, these morphological discontinuities are not always consistent with patterns of genetic differentiation. Here we assess genetic distinctiveness of grey wolves from the Caucasus (a region at the border between Europe and West Asia) that have been classified as a distinct subspecies C. l. cubanensis. We analysed their genetic variability based on mtDNA control region, microsatellite loci and genome-wide SNP genotypes (obtained for a subset of the samples), and found similar or higher levels of genetic diversity at all these types of loci as compared with other Eurasian populations. Although we found no evidence for a recent genetic bottleneck, genome-wide linkage disequilibrium patterns suggest a long-term demographic decline in the Caucasian population--a trend consistent with other Eurasian populations. Caucasian wolves share mtDNA haplotypes with both Eastern European and West Asian wolves, suggesting past or ongoing gene flow. Microsatellite data also suggest gene flow between the Caucasus and Eastern Europe. We found evidence for moderate admixture between the Caucasian wolves and domestic dogs, at a level comparable with other Eurasian populations. Taken together, our results show that Caucasian wolves are not genetically isolated from other Eurasian populations, share with them the same demographic trends, and are affected by similar conservation problems.


Asunto(s)
ADN Mitocondrial/genética , Variación Genética , Lobos/genética , Animales , Europa (Continente) , Europa Oriental , Flujo Génico , Sitios Genéticos , Genética de Población , Haplotipos , Repeticiones de Microsatélite , Medio Oriente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA