Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 137: 108787, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37141955

RESUMEN

Regeneration refers to the regrowing and replacing of injured or lost body parts. Crayfish antennae are nervous organs that are crucial for perceiving environmental signals. Immune cells (hemocytes) are responsible for neurogenesis in crayfish. Here, we used transmission electron microscopy to investigate at ultrastructural levels the potential roles of immune cells in nerve regeneration in crayfish antennae after amputation. The results showed that, while all three types of hemocytes were observed during nerve regeneration, granules of semi-granulocytes and granulocytes are the main sources of new organelles such as mitochondria, the Golgi apparatus and nerve fibres in the regenerated nerves of crayfish antennae. We describe the transformation of immune cell granules into different organelles in the regenerating nerve at ultrastructural levels. Also, we observed that the regeneration process speeds up after crayfish moulting. In conclusion, the granules are compacted packages of versatile materials carried by immune cells and can be converted into different organelles during nerve regeneration in crayfish antennae.


Asunto(s)
Astacoidea , Hemocitos , Animales , Regeneración Nerviosa/fisiología , Orgánulos , Microscopía Electrónica de Transmisión
2.
Artículo en Inglés | MEDLINE | ID: mdl-36241042

RESUMEN

Crustaceans and in particular decapods (i.e. shrimp, crabs and lobsters) are a diverse, commercially and ecologically important group of organisms. They are exposed to a range of environmental factors whose abiotic and biotic components are prone to fluctuate beyond their optimum ranges and, in doing so, affect crustaceans' immune system and health. Changes in key environmental factors such as temperature, pH, salinity, dissolved oxygen, ammonia concentrations and pathogens can provoke stress and immune responses due to alterations in immune parameters. The mechanisms through which stressors mediate effects on immune parameters are not fully understood in decapods. Improved knowledge of the environmental factors - above all, their abiotic components - that influence the immune parameters of decapods could help mitigate or constrain their harmful effects that adversely affect the production of decapod crustaceans. The first part of this overview examines current knowledge and information gaps regarding the basic components and functions of the innate immune system of decapods. In the second part, we discuss various mechanisms provoked by environmental factors and categorize cellular and molecular immune responses to each environmental factor with special reference to decapods.


Asunto(s)
Braquiuros , Decápodos , Animales , Decápodos/fisiología , Temperatura , Sistema Inmunológico
3.
Dev Comp Immunol ; 141: 104618, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36526080

RESUMEN

Crustacean hemocytes are important mediators of immune functions such as coagulation and phagocytosis. We employed an in situ approach to investigate the ultrastructural behavior of hemocytes during coagulation and phagocytosis in the early stages after injury caused by leg amputation, using transmission electron microscopy technique in marbled crayfish Procambarus virginalis. Hemocytes underwent drastic morphological changes during coagulation. The morphology of the cytoplasmic granules changed from electron-dense to electron-lucent forms in an expanding manner. The transformed granules containing amorphous electron-lucent material were observed to merge and discharge their contents into extracellular space for coagulation. We also observed that the contents of the nucleus participate in the process of coagulation. In addition, leg amputation induced extensive muscle degeneration and necrotic tissues were avidly taken up by the phagocytic hemocytes containing distinct phagosomes. Interestingly, we observed for the first time how the digested contents of phagocytized necrotic tissues are incorporated into granules and other cellular components that change the cell morphology by increasing the granularity of the hemocytes. Nevertheless, the degranulation of hemocytes during coagulation can also reduce their granularity. Given that morphological traits are important criteria for hemocyte classification, these morphological changes that occur during coagulation and phagocytosis must be taken into account.


Asunto(s)
Artrópodos , Hemocitos , Animales , Astacoidea , Fagocitosis , Fagosomas
4.
PeerJ ; 11: e15006, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908819

RESUMEN

Background: Antennae in crayfish are essential for gaining information about the local topography and localising food, chemicals, conspecifics or predator. There are still gaps in the research on the morphology of antennae in decapods compared to other arthropods. Methodology: Biometrical and ultrastructural methods were applied using light and cryo-scanning electron microscopies to study the morphology of antennae in six different crayfish species, including marbled crayfish Procambarus virginalis, Mexican dwarf crayfish Cambarellus patzcuarensis, red swamp crayfish Procambarus clarkii, signal crayfish Pacifastacus leniusculus, common yabby Cherax destructor, and spiny-cheek crayfish Faxonius limosus to find their potential morphological differences. Results: Significant differences in the antenna length, length and width of each segment to carapace length ratios, and the number of segments were found in the six crayfish species. The ultrastructure revealed differences in the distribution of sensory hairs on the antenna and the morphology of the antennal surface. Conclusions: The different morphology of antennae might reflect adaptation to the conditions of their specific habitats. In addition, results showed that a combination of differences in the morphological features and biometrical measurements of antennae could be used for the distinguishment of different studied crayfish species.


Asunto(s)
Astacoidea , Ecosistema , Animales , Alimentos Marinos , Cabello
5.
Dev Comp Immunol ; 147: 104760, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37331675

RESUMEN

Hemolymph is the circulatory fluid that fills the body cavity of crustaceans, analogous to blood in vertebrates. Hemolymph coagulation, similar to blood clotting in vertebrates, plays a crucial role in wound healing and innate immune responses. Despite extensive studies on the clotting process in crustaceans, no comparative quantitative analysis of the protein composition of non-clotted and clotted hemolymph in any decapod has been reported. In this study, we used label-free protein quantification with high-resolution mass spectrometry to identify the proteomic profile of hemolymph in crayfish and quantify significant changes in protein abundances between non-clotted and clotted hemolymph. Our analysis identified a total of two-hundred and nineteen proteins in both hemolymph groups. Furthermore, we discussed the potential functions of the top most high and low-abundant proteins in hemolymph proteomic profile. The quantity of most of the proteins was not significantly changed during coagulation between non-clotted and clotted hemolymph, which may indicate that clotting proteins are likely pre-synthesized, allowing for a swift coagulation response to injury. Four proteins still showed abundance differences (p < 0.05, fold change>2), including C-type lectin domain-containing proteins, Laminin A chain, Tropomyosin, and Reverse transcriptase domain-containing proteins. While the first three proteins were down-regulated, the last one was up-regulated. The down-regulation of structural and cytoskeletal proteins may affect the process of hemocyte degranulation needed for coagulation, while the up-regulation of an immune-related protein might be attributed to the phagocytosis ability of viable hemocytes during coagulation.


Asunto(s)
Astacoidea , Hemolinfa , Animales , Astacoidea/fisiología , Hemolinfa/metabolismo , Proteómica , Coagulación Sanguínea/fisiología , Factores de Coagulación Sanguínea/metabolismo , Hemocitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA