Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(2): 102836, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36572185

RESUMEN

Gap junctional intercellular communication (GJIC) involving astrocytes is important for proper CNS homeostasis. As determined in our previous studies, trafficking of the predominant astrocyte GJ protein, Connexin43 (Cx43), is disrupted in response to infection with a neurotropic murine ß-coronavirus (MHV-A59). However, how host factors are involved in Cx43 trafficking and the infection response is not clear. Here, we show that Cx43 retention due to MHV-A59 infection was associated with increased ER stress and reduced expression of chaperone protein ERp29. Treatment of MHV-A59-infected astrocytes with the chemical chaperone 4-sodium phenylbutyrate increased ERp29 expression, rescued Cx43 transport to the cell surface, increased GJIC, and reduced ER stress. We obtained similar results using an astrocytoma cell line (delayed brain tumor) upon MHV-A59 infection. Critically, delayed brain tumor cells transfected to express exogenous ERp29 were less susceptible to MHV-A59 infection and showed increased Cx43-mediated GJIC. Treatment with Cx43 mimetic peptides inhibited GJIC and increased viral susceptibility, demonstrating a role for intercellular communication in reducing MHV-A59 infectivity. Taken together, these results support a therapeutically targetable ERp29-dependent mechanism where ß-coronavirus infectivity is modulated by reducing ER stress and rescuing Cx43 trafficking and function.


Asunto(s)
Susceptibilidad a Enfermedades , Retículo Endoplásmico , Interacciones Microbiota-Huesped , Chaperonas Moleculares , Virus de la Hepatitis Murina , Animales , Ratones , Astrocitoma/patología , Astrocitoma/virología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/virología , Comunicación Celular , Línea Celular Tumoral , Conexina 43/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Uniones Comunicantes/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Virus de la Hepatitis Murina/metabolismo , Transporte de Proteínas , Transfección
2.
Am J Respir Cell Mol Biol ; 68(2): 150-160, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36178467

RESUMEN

RIPK3 (receptor-interacting protein kinase 3) activity triggers cell death via necroptosis, whereas scaffold function supports protein binding and cytokine production. To determine if RIPK3 kinase or scaffold domains mediate pathology during Pseudomonas aeruginosa infection, control mice and those with deletion or mutation of RIPK3 and associated signaling partners were subjected to Pseudomonas pneumonia and followed for survival or killed for biologic assays. Murine immune cells were studied in vitro for Pseudomonas-induced cytokine production and cell death, and RIPK3 binding interactions were blocked with the viral inhibitor M45. Human tissue effects were assayed by infecting airway epithelial cells with Pseudomonas and measuring cytokine production after siRNA inhibition of RIPK3. Deletion of RIPK3 reduced inflammation and decreased animal mortality after Pseudomonas pneumonia. RIPK3 kinase inactivation did neither. In cell culture, RIPK3 was dispensable for cell killing by Pseudomonas and instead drove cytokine production that required the RIPK3 scaffold domain but not kinase activity. Blocking the RIP homotypic interaction motif (RHIM) with M45 reduced the inflammatory response to infection in vitro. Similarly, siRNA knockdown of RIPK3 decreased infection-triggered inflammation in human airway epithelial cells. Thus, the RIPK3 scaffold drives deleterious pulmonary inflammation and mortality in a relevant clinical model of Pseudomonas pneumonia. This process is distinct from kinase-mediated necroptosis, requiring only the RIPK3 RHIM. Inhibition of RHIM signaling is a potential strategy to reduce lung inflammation during infection.


Asunto(s)
Neumonía , Pseudomonas aeruginosa , Animales , Humanos , Ratones , Pseudomonas aeruginosa/metabolismo , Apoptosis , Inflamación/metabolismo , ARN Interferente Pequeño , Citocinas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
3.
Am J Physiol Lung Cell Mol Physiol ; 325(5): L647-L661, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37786945

RESUMEN

Alcohol use disorder (AUD) is a significant public health concern and people with AUD are more likely to develop severe acute respiratory distress syndrome (ARDS) in response to respiratory infections. To examine whether AUD was a risk factor for more severe outcome in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we examined early responses to infection using cultured differentiated bronchial epithelial cells derived from brushings obtained from people with AUD or without AUD. RNA-seq analysis of uninfected cells determined that AUD cells were enriched for expression of epidermal genes as compared with non-AUD cells. Bronchial epithelial cells from patients with AUD showed a significant decrease in barrier function 72 h postinfection, as determined by transepithelial electrical resistance. In contrast, barrier function of non-AUD cells was enhanced 72 h after SARS-CoV-2 infection. AUD cells showed claudin-7 that did not colocalize with zonula occludens-1 (ZO-1), indicative of disorganized tight junctions. However, both AUD and non-AUD cells showed decreased ß-catenin expression following SARS-CoV-2 infection. To determine the impact of AUD on the inflammatory response to SARS-CoV-2 infection, cytokine secretion was measured by multiplex analysis. SARS-CoV-2-infected AUD bronchial cells had enhanced secretion of multiple proinflammatory cytokines including TNFα, IL-1ß, and IFNγ as opposed to non-AUD cells. In contrast, secretion of the barrier-protective cytokines epidermal growth factor (EGF) and granulocyte macrophage-colony stimulating factor (GM-CSF) was enhanced for non-AUD bronchial cells. Taken together, these data support the hypothesis that AUD is a risk factor for COVID-19, where alcohol primes airway epithelial cells for increased inflammation and increased barrier dysfunction and increased inflammation in response to infection by SARS-CoV-2.NEW & NOTEWORTHY Alcohol use disorder (AUD) is a significant risk factor for severe acute respiratory distress syndrome. We found that AUD causes a phenotypic shift in gene expression in human bronchial epithelial cells, enhancing expression of epidermal genes. AUD cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had higher levels of proinflammatory cytokine secretion and barrier dysfunction not present in infected non-AUD cells, consistent with increased early COVID-19 severity due to AUD.


Asunto(s)
Alcoholismo , COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , SARS-CoV-2/metabolismo , Citocinas/metabolismo , Inflamación
4.
J Infect Dis ; 227(1): 50-60, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36281651

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is a leading viral respiratory pathogen in infants. The objective of this study was to generate RSV live-attenuated vaccine (LAV) candidates by removing the G-protein mucin domains to attenuate viral replication while retaining immunogenicity through deshielding of surface epitopes. METHODS: Two LAV candidates were generated from recombinant RSV A2-line19F by deletion of the G-protein mucin domains (A2-line19F-G155) or deletion of the G-protein mucin and transmembrane domains (A2-line19F-G155S). Vaccine attenuation was measured in BALB/c mouse lungs by fluorescent focus unit (FFU) assays and real-time polymerase chain reaction (RT-PCR). Immunogenicity was determined by measuring serum binding and neutralizing antibodies in mice following prime/boost on days 28 and 59. Efficacy was determined by measuring RSV lung viral loads on day 4 postchallenge. RESULTS: Both LAVs were undetectable in mouse lungs by FFU assay and elicited similar neutralizing antibody titers compared to A2-line19F on days 28 and 59. Following RSV challenge, vaccinated mice showed no detectable RSV in the lungs by FFU assay and a significant reduction in RSV RNA in the lungs by RT-PCR of 560-fold for A2-line19F-G155 and 604-fold for A2-line19F-G155S compared to RSV-challenged, unvaccinated mice. CONCLUSIONS: Removal of the G-protein mucin domains produced RSV LAV candidates that were highly attenuated with retained immunogenicity.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Animales , Ratones , Vacunas Atenuadas , Mucinas , Ratones Endogámicos BALB C , Virus Sincitial Respiratorio Humano/genética , Anticuerpos Neutralizantes , Proteínas de Unión al GTP , Anticuerpos Antivirales , Proteínas Virales de Fusión/genética
5.
J Immunol ; 204(11): 2995-3007, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32312847

RESUMEN

The proinflammatory cytokine IL-1ß is a significant risk factor in cardiovascular disease that can be targeted to reduce major cardiovascular events. IL-1ß expression and release are tightly controlled by changes in intracellular Ca2+ ([Ca2+]i), which has been associated with ATP release and purinergic signaling. Despite this, the mechanisms that regulate these changes have not been identified. The pannexin 1 (Panx1) channels have canonically been implicated in ATP release, especially during inflammation. We examined Panx1 in human umbilical vein endothelial cells following treatment with the proinflammatory cytokine TNF-α. Analysis by whole transcriptome sequencing and immunoblot identified a dramatic increase in Panx1 mRNA and protein expression that is regulated in an NF-κB-dependent manner. Furthermore, genetic inhibition of Panx1 reduced the expression and release of IL-1ß. We initially hypothesized that increased Panx1-mediated ATP release acted in a paracrine fashion to control cytokine expression. However, our data demonstrate that IL-1ß expression was not altered after direct ATP stimulation in human umbilical vein endothelial cells. Because Panx1 forms a large pore channel, we hypothesized it may permit Ca2+ diffusion into the cell to regulate IL-1ß. High-throughput flow cytometric analysis demonstrated that TNF-α treatments lead to elevated [Ca2+]i, corresponding with Panx1 membrane localization. Genetic or pharmacological inhibition of Panx1 reduced TNF-α-associated increases in [Ca2+]i, blocked phosphorylation of the NF-κB-p65 protein, and reduced IL-1ß transcription. Taken together, the data in our study provide the first evidence, to our knowledge, that [Ca2+]i regulation via the Panx1 channel induces a feed-forward effect on NF-κB to regulate IL-1ß synthesis and release in endothelium during inflammation.


Asunto(s)
Conexinas/metabolismo , Endotelio Vascular/metabolismo , Inflamación/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Señalización del Calcio , Conexinas/genética , Endotelio Vascular/patología , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interleucina-1beta/metabolismo , Espacio Intracelular , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/genética , Fosforilación , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba , Secuenciación del Exoma
6.
Purinergic Signal ; 17(4): 521-531, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34251590

RESUMEN

Pannexin 1 (Panx1) is a ubiquitously expressed protein forming large conductance channels that are central to many distinct inflammation and injury responses. There is accumulating evidence showing ATP released from Panx1 channels, as well as metabolites, provide effective paracrine and autocrine signaling molecules that regulate different elements of the injury response. As channels with a broad range of permselectivity, Panx1 channels mediate the secretion and uptake of multiple solutes, ranging from calcium to bacterial derived molecules. In this review, we describe how Panx1 functions in response to different pro-inflammatory stimuli, focusing mainly on signaling coordinated by the vasculature. How Panx1 mediates ATP release by injured cells is also discussed. The ability of Panx1 to serve as a central component of many diverse physiologic responses has proven to be critically dependent on the context of expression, post-translational modification, interacting partners, and the mode of stimulation.


Asunto(s)
Conexinas/metabolismo , Inflamación/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Daño por Reperfusión/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Humanos , Transducción de Señal/fisiología
7.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34638526

RESUMEN

Gap junctions (GJ) and connexins play integral roles in cellular physiology and have been found to be involved in multiple pathophysiological states from cancer to cardiovascular disease. Studies over the last 60 years have demonstrated the utility of altering GJ signaling pathways in experimental models, which has led to them being attractive targets for therapeutic intervention. A number of different mechanisms have been proposed to regulate GJ signaling, including channel blocking, enhancing channel open state, and disrupting protein-protein interactions. The primary mechanism for this has been through the design of numerous peptides as therapeutics, that are either currently in early development or are in various stages of clinical trials. Despite over 25 years of research into connexin targeting peptides, the overall mechanisms of action are still poorly understood. In this overview, we discuss published connexin targeting peptides, their reported mechanisms of action, and the potential for these molecules in the treatment of disease.


Asunto(s)
Conexinas/metabolismo , Péptidos/metabolismo , Péptidos/farmacología , Animales , Uniones Comunicantes/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo , Isoformas de Proteínas/metabolismo , Transducción de Señal
8.
Clin Sci (Lond) ; 134(14): 1911-1934, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32537652

RESUMEN

Cystic fibrosis (CF) is a progressive multiorgan autosomal recessive disease with devastating impact on the lungs caused by derangements of the CF transmembrane conductance regulator (CFTR) gene. Morbidity and mortality are caused by the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Pseudomonas aeruginosa is the main respiratory pathogen in individuals with CF infecting most patients in later stages. Despite its recognized clinical impact, molecular mechanisms that underlie P. aeruginosa pathogenesis and the host response to P. aeruginosa infection remain incompletely understood. The nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) γ (PPARγ), has shown to be reduced in CF airways. In the present study, we sought to investigate the upstream mechanisms repressing PPARγ expression and its impact on airway epithelial host defense. Endoplasmic reticulum-stress (ER-stress) triggered unfolded protein response (UPR) activated by misfolded CFTR and P. aeruginosa infection contributed to attenuated expression of PPARγ. Specifically, the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway led to the enhanced expression of the CCAAT-enhancer-binding-protein homologous protein (CHOP). CHOP induction led to the repression of PPARγ expression. Mechanistically, we showed that CHOP induction mediated PPARγ attenuation, impacted the innate immune function of normal and ∆F508 primary airway epithelial cells by reducing expression of antimicrobial peptide (AMP) and paraoxanse-2 (PON-2), as well as enhancing IL-8 expression. Furthermore, mitochondrial reactive oxygen species production (mt-ROS) and ER-stress positive feedforward loop also dysregulated mitochondrial bioenergetics. Additionally, our findings implicate that PPARγ agonist pioglitazone (PIO) has beneficial effect on the host at the multicellular level ranging from host defense to mitochondrial re-energization.


Asunto(s)
Fibrosis Quística/metabolismo , PPAR gamma/metabolismo , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/fisiología , Respuesta de Proteína Desplegada , Células A549 , Arildialquilfosfatasa/metabolismo , Fibrosis Quística/complicaciones , Fibrosis Quística/microbiología , Estrés del Retículo Endoplásmico , Células Epiteliales/metabolismo , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Interleucina-8/metabolismo , Mitocondrias/metabolismo , PPAR gamma/agonistas , Pioglitazona , Infecciones por Pseudomonas/inmunología , Factor de Transcripción CHOP/metabolismo , beta-Defensinas/metabolismo
9.
FASEB J ; 31(8): 3608-3621, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28442545

RESUMEN

Pseudomonas aeruginosa is a significant contributor to recalcitrant multidrug-resistant infections, especially in immunocompromised and hospitalized patients. The pathogenic profile of P. aeruginosa is related to its ability to secrete a variety of virulence factors and to promote biofilm formation. Quorum sensing (QS) is a mechanism wherein P. aeruginosa secretes small diffusible molecules, specifically acyl homo serine lactones, such as N-(3-oxo-dodecanoyl)-l-homoserine lactone (3O-C12-HSL), that promote biofilm formation and virulence via interbacterial communication. Strategies that strengthen the host's ability to inhibit bacterial virulence would enhance host defenses and improve the treatment of resistant infections. We have recently shown that peroxisome proliferator-activated receptor γ (PPARγ) agonists are potent immunostimulators that play a pivotal role in host response to virulent P. aeruginosa Here, we show that QS genes in P. aeruginosa (strain PAO1) and 3O-C12-HSL attenuate PPARγ expression in bronchial epithelial cells. PAO1 and 3O-C12-HSL induce barrier derangements in bronchial epithelial cells by lowering the expression of junctional proteins, such as zonula occludens-1, occludin, and claudin-4. Expression of these proteins was restored in cells that were treated with pioglitazone, a PPARγ agonist, before infection with PAO1 and 3O-C12-HSL. Barrier function and bacterial permeation studies that have been performed in primary human epithelial cells showed that PPARγ agonists are able to restore barrier integrity and function that are disrupted by PAO1 and 3O-C12-HSL. Mechanistically, we show that these effects are dependent on the induction of paraoxonase-2, a QS hydrolyzing enzyme, that mitigates the effects of QS molecules. Importantly, our data show that pioglitazone, a PPARγ agonist, significantly inhibits biofilm formation on epithelial cells by a mechanism that is mediated via paraoxonase-2. These findings elucidate a novel role for PPARγ in host defense against P. aeruginosa Strategies that activate PPARγ can provide a therapeutic complement for treatment of resistant P. aeruginosa infections.-Bedi, B., Maurice, N. M., Ciavatta, V. T., Lynn, K. S., Yuan, Z., Molina, S. A., Joo, M., Tyor, W. R., Goldberg, J. B., Koval, M., Hart, C. M., Sadikot, R. T. Peroxisome proliferator-activated receptor-γ agonists attenuate biofilm formation by Pseudomonas aeruginosa.


Asunto(s)
Proteínas Bacterianas/farmacología , Biopelículas/crecimiento & desarrollo , PPAR gamma/agonistas , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Arildialquilfosfatasa/genética , Arildialquilfosfatasa/metabolismo , Línea Celular , Células Epiteliales/microbiología , Regulación de la Expresión Génica/fisiología , Humanos , Mutación , Pseudomonas aeruginosa/genética , Percepción de Quorum
10.
Exp Cell Res ; 355(2): 153-161, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28390677

RESUMEN

Transport of therapeutic agents across epithelial barriers is an important element in drug delivery. Transepithelial flux is widely used as a measure of transit across an epithelium, however it is most typically employed as a relative as opposed to absolute measure of molecular movement. Here, we have used the calcium switch approach to measure the maximum rate of paracellular flux through unencumbered intercellular junctions as a method to calibrate the flux rates for a series of tracers ranging in 0.6-900kDa in size across barriers composed of human colon epithelial (Caco-2) cells. We then examined the effects of nanostructured films (NSFs) on transepithelial transport. Two different NSF patterns were used, Defined Nanostructure (DN) 2 imprinted on polypropylene (PP) and DN3 imprinted on polyether ether ketone (PEEK). NSFs made direct contact with cells and decreased their barrier function, as measured by transepithelial resistance (TER), however cell viability was not affected. When NSF-induced transepithelial transport of Fab fragment (55kDa) and IgG (160kDa) was measured, it was unexpectedly found to be significantly greater than the maximum paracellular rate as predicted using cells cultured in low calcium. These data suggested that NSFs stimulate an active transport pathway, most likely transcytosis, in addition to increasing paracellular flux. Transport of IgG via transcytosis was confirmed by immunofluorescence confocal microscopy, since NSFs induced a significant level of IgG endocytosis by Caco-2 cells. Thus, NSF-induced IgG flux was attributable to both transcytosis and the paracellular route. These data provide the first demonstration that transcytosis can be stimulated by NSFs and that this was concurrent with increased paracellular permeability. Moreover, NSFs with distinct architecture paired with specific substrates have the potential to provide an effective means to regulate transepithelial transport in order to optimize drug delivery.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Nanoestructuras/química , Transcitosis/efectos de los fármacos , Células CACO-2 , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Propiedades de Superficie
11.
Int J Mol Sci ; 19(5)2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29701678

RESUMEN

Connexins are tetraspan transmembrane proteins that form gap junctions and facilitate direct intercellular communication, a critical feature for the development, function, and homeostasis of tissues and organs. In addition, a growing number of gap junction-independent functions are being ascribed to these proteins. The connexin gene family is under extensive regulation at the transcriptional and post-transcriptional level, and undergoes numerous modifications at the protein level, including phosphorylation, which ultimately affects their trafficking, stability, and function. Here, we summarize these key regulatory events, with emphasis on how these affect connexin multifunctionality in health and disease.


Asunto(s)
Conexinas/genética , Uniones Comunicantes/patología , Procesamiento Proteico-Postraduccional , Animales , Conexinas/metabolismo , Uniones Comunicantes/genética , Uniones Comunicantes/metabolismo , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Humanos , Transporte de Proteínas
12.
Semin Cell Dev Biol ; 42: 47-57, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25951797

RESUMEN

The lung must maintain a proper barrier between airspaces and fluid filled tissues in order to maintain lung fluid balance. Central to maintaining lung fluid balance are epithelial cells which create a barrier to water and solutes. The barrier function of these cells is mainly provided by tight junction proteins known as claudins. Epithelial barrier function varies depending on the different needs within the segments of the respiratory tree. In the lower airways, fluid is required to maintain mucociliary clearance, whereas in the terminal alveolar airspaces a thin layer of surfactant enriched fluid lowers surface tension to prevent airspace collapse and is critical for gas exchange. As the epithelial cells within the segments of the respiratory tree differ, the composition of claudins found in these epithelial cells is also different. Among these differences is claudin-18 which is uniquely expressed by the alveolar epithelial cells. Other claudins, notably claudin-4 and claudin-7, are more ubiquitously expressed throughout the respiratory epithelium. Claudin-5 is expressed by both pulmonary epithelial and endothelial cells. Based on in vitro and in vivo model systems and histologic analysis of lungs from human patients, roles for specific claudins in maintaining barrier function and protecting the lung from the effects of acute injury and disease are being identified. One surprising finding is that claudin-18 and claudin-4 control lung cell phenotype and inflammation beyond simply maintaining a selective paracellular permeability barrier. This suggests claudins have more nuanced roles for the control of airway and alveolar physiology in the healthy and diseased lung.


Asunto(s)
Claudinas/metabolismo , Pulmón/metabolismo , Mucosa Respiratoria/metabolismo , Animales , Fibrosis Quística/patología , Fibrosis Quística/fisiopatología , Humanos , Mucosa Respiratoria/citología , Uniones Estrechas/metabolismo
13.
Biochim Biophys Acta ; 1858(1): 57-66, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26449341

RESUMEN

The mutation N188T in human connexin46 (hCx46) correlates with a congenital nuclear pulverulent cataract. This mutation is in the second extracellular loop, a domain involved in docking of gap junction hemichannels. To analyze the functional consequences of this mutation, we expressed hCx46N188T and the wild type (hCx46wt) in Xenopus oocytes and HeLa cells. In Xenopus oocytes, hemichannels formed by hCx46wt and hCx46N188T had similar electrical properties. Additionally, a Ca(2+) and La(3+) sensitive current was observed in HeLa cells expressing eGFP-labeled hCx46wt or eGFP-labeled hCx46N188T. These results suggest that the N188T mutation did not alter apparent expression and the membrane targeting of the protein. Cells expressing hCx46wt-eGFP formed gap junction plaques, but plaques formed by hCx46N188T were extremely rare. A reduced plaque formation was also found in cells cotransfected with hCx46N188T-eGFP and mCherry-labeled hCx46wt as well as in cocultured cells expressing hCx46N188T-eGFP and hCx46wt-mCherry. Dye transfer experiments in cells expressing hCx46N188T revealed a lower transfer rate than cells expressing hCx46wt. We postulate that the N188T mutation affects intercellular connexon docking. This hypothesis is supported by molecular modeling of hCx46 using the crystal structure of hCx26 as a template. The model indicated that N188 is important for hemichannel docking through formation of hydrogen bonds with the residues R180, T189 and D191 of the opposing hCx46. The results suggest that the N188T mutation hinders the docking of the connexons to form gap junction channels. Moreover, the finding that a glutamine substitution (hCx46N188Q) could not rescue the docking emphasizes the specific role of N188.


Asunto(s)
Conexinas/química , Uniones Comunicantes/metabolismo , Xenopus laevis/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Calcio/metabolismo , Cationes Bivalentes , Conexinas/genética , Conexinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Uniones Comunicantes/química , Uniones Comunicantes/ultraestructura , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Enlace de Hidrógeno , Transporte Iónico , Lantano/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Mutación , Técnicas de Placa-Clamp , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Fluorescente Roja
14.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L688-L702, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28213469

RESUMEN

Cystic fibrosis-related diabetes is the most common comorbidity associated with cystic fibrosis (CF) and correlates with increased rates of lung function decline. Because glucose is a nutrient present in the airways of patients with bacterial airway infections and because insulin controls glucose metabolism, the effect of insulin on CF airway epithelia was investigated to determine the role of insulin receptors and glucose transport in regulating glucose availability in the airway. The response to insulin by human airway epithelial cells was characterized by quantitative PCR, immunoblot, immunofluorescence, and glucose uptake assays. Phosphatidylinositol 3-kinase/protein kinase B (Akt) signaling and cystic fibrosis transmembrane conductance regulator (CFTR) activity were analyzed by pharmacological and immunoblot assays. We found that normal human primary airway epithelial cells expressed glucose transporter 4 and that application of insulin stimulated cytochalasin B-inhibitable glucose uptake, consistent with a requirement for glucose transporter translocation. Application of insulin to normal primary human airway epithelial cells promoted airway barrier function as demonstrated by increased transepithelial electrical resistance and decreased paracellular flux of small molecules. This provides the first demonstration that airway cells express insulin-regulated glucose transporters that act in concert with tight junctions to form an airway glucose barrier. However, insulin failed to increase glucose uptake or decrease paracellular flux of small molecules in human airway epithelia expressing F508del-CFTR. Insulin stimulation of Akt1 and Akt2 signaling in CF airway cells was diminished compared with that observed in airway cells expressing wild-type CFTR. These results indicate that the airway glucose barrier is regulated by insulin and is dysfunctional in CF.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Insulina/metabolismo , Pulmón/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Líquido del Lavado Bronquioalveolar , Línea Celular Transformada , Polaridad Celular , Activación Enzimática , Células Epiteliales/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Células HEK293 , Humanos , Inmunohistoquímica , Ratones , Modelos Biológicos , Receptor de Insulina/metabolismo
15.
J Neurophysiol ; 118(4): 2156-2170, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28794192

RESUMEN

Successful task switching requires a network of brain areas to select, maintain, implement, and execute the appropriate task. Although frontoparietal brain areas are thought to play a critical role in task switching by selecting and encoding task rules and exerting top-down control, how brain areas closer to the execution of tasks participate in task switching is unclear. The superior colliculus (SC) integrates information from various brain areas to generate saccades and is likely influenced by task switching. Here, we investigated switch costs in nonhuman primates and their neural correlates in the activity of SC saccade-related neurons in monkeys performing cued, randomly interleaved pro- and anti-saccade trials. We predicted that behavioral switch costs would be associated with differential modulations of SC activity in trials on which the task was switched vs. repeated, with activity on the current trial resembling that associated with the task set of the previous trial when a switch occurred. We observed both error rate and reaction time switch costs and changes in the discharge rate and timing of activity in SC neurons between switch and repeat trials. These changes were present later in the task only after fixation on the cue stimuli but before saccade onset. These results further establish switch costs in macaque monkeys and suggest that SC activity is modulated by task-switching processes in a manner inconsistent with the concept of task set inertia.NEW & NOTEWORTHY Task-switching behavior and superior colliculus (SC) activity were investigated in nonhuman primates performing randomly interleaved pro- and anti-saccade tasks. Here, we report error rate and reaction time switch costs in macaque monkeys and associated differences in stimulus-related activity of saccade-related neurons in the SC. These results provide a neural correlate for task switching and suggest that the SC is modulated by task-switching processes and may reflect the completion of task set reconfiguration.


Asunto(s)
Neuronas/fisiología , Movimientos Sacádicos , Colículos Superiores/fisiología , Animales , Señales (Psicología) , Objetivos , Macaca mulatta , Masculino , Tiempo de Reacción , Colículos Superiores/citología
16.
Mol Med ; 23: 155-165, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28598488

RESUMEN

Sepsis-induced intestinal hyperpermeability is mediated by disruption of the epithelial tight junction, which is closely associated with the peri-junctional actin-myosin ring. Myosin light chain kinase (MLCK) phosphorylates the myosin regulatory light chain, resulting in increased permeability. The purpose of this study was to determine whether genetic deletion of MLCK would alter gut barrier function and survival from sepsis. MLCK-/- and wild type (WT) mice were subjected to cecal ligation and puncture and assayed for both survival and mechanistic studies. Survival was significantly increased in MLCK-/- mice (95% vs. 24%, p<0.0001). Intestinal permeability increased in septic WT mice compared to unmanipulated mice. In contrast, permeability in septic MLCK-/- mice was similar to that seen in unmanipulated animals. Improved gut barrier function in MLCK-/- mice was associated with increases in the tight junction mediators ZO-1 and claudin 15 without alterations in claudin 1, 2, 3, 4, 5, 7, 8, 13, occludin or JAM-A. Other components of intestinal integrity (apoptosis, proliferation and villus length) were unaffected by MLCK deletion as were local peritoneal inflammation and distant lung injury. Systemic IL-10 was decreased greater than 10-fold in MLCK-/- mice; however, survival was similar between septic MLCK-/- mice given exogenous IL-10 or vehicle. These data demonstrate that deletion of MLCK improves survival following sepsis, associated with normalization of intestinal permeability and selected tight junction proteins.


Asunto(s)
Mucosa Intestinal/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Sepsis/metabolismo , Animales , Femenino , Interleucina-10/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Quinasa de Cadena Ligera de Miosina/genética , Permeabilidad , Proteínas de Uniones Estrechas/metabolismo
17.
Annu Rev Physiol ; 75: 551-67, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23072447

RESUMEN

Lung epithelial cells interconnected by tight junctions provide a barrier to the free diffusion of solutes into airspaces. Transmembrane tight junction proteins known as claudins are essential for epithelial barrier function. Claudins are regulated through interactions with each other that are coordinated with other transmembrane tight junction proteins and cytosolic scaffold proteins. Of the 14 claudins expressed by the alveolar epithelium, claudin-3, claudin-4, and claudin-18 are the most prominent; each confers unique properties to alveolar barrier function. In particular, a protective role for claudin-4 in preventing lung injury has emerged. By contrast, lung diseases that affect claudin expression and impair barrier function, including alcoholic lung syndrome and sepsis, prime the lung for pulmonary edema. Thus, approaches to restore and/or augment lung claudin expression provide potential targets for promoting healthy barrier function.


Asunto(s)
Claudinas/fisiología , Pulmón/fisiología , Uniones Estrechas/fisiología , Animales , Células Epiteliales/fisiología , Humanos , Pulmón/citología , Enfermedades Pulmonares/patología , Enfermedades Pulmonares/fisiopatología , Proteínas de Uniones Estrechas/fisiología
18.
J Proteome Res ; 15(2): 339-59, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26680015

RESUMEN

Claudins are the major transmembrane protein components of tight junctions in human endothelia and epithelia. Tissue-specific expression of claudin members suggests that this protein family is not only essential for sustaining the role of tight junctions in cell permeability control but also vital in organizing cell contact signaling by protein-protein interactions. How this protein family is collectively processed and regulated is key to understanding the role of junctional proteins in preserving cell identity and tissue integrity. The focus of this review is to first provide a brief overview of the functional context, on the basis of the extensive body of claudin biology research that has been thoroughly reviewed, for endogenous human claudin members and then ascertain existing and future proteomics techniques that may be applicable to systematically characterizing the chemical forms and interacting protein partners of this protein family in human. The ability to elucidate claudin-based signaling networks may provide new insight into cell development and differentiation programs that are crucial to tissue stability and manipulation.


Asunto(s)
Claudinas/metabolismo , Proteómica/métodos , Transducción de Señal , Uniones Estrechas/metabolismo , Claudinas/genética , Endotelio/metabolismo , Epitelio/metabolismo , Glicosilación , Humanos , Familia de Multigenes , Mapas de Interacción de Proteínas
19.
Am J Pathol ; 185(8): 2206-18, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26216285

RESUMEN

The intestinal epithelium is a dynamic barrier that maintains the distinct environments of intestinal tissue and lumen. Epithelial barrier function is defined principally by tight junctions, which, in turn, depend on the regulated expression of claudin family proteins. Claudins are expressed differentially during intestinal epithelial cell (IEC) differentiation. However, regulatory mechanisms governing claudin expression during epithelial differentiation are incompletely understood. We investigated the molecular mechanisms regulating claudin-7 during IEC differentiation. Claudin-7 expression is increased as epithelial cells differentiate along the intestinal crypt-luminal axis. By using model IECs we observed increased claudin-7 mRNA and nascent heteronuclear RNA levels during differentiation. A screen for potential regulators of the CLDN7 gene during IEC differentiation was performed using a transcription factor/DNA binding array, CLDN7 luciferase reporters, and in silico promoter analysis. We identified hepatocyte nuclear factor 4α as a regulatory factor that bound endogenous CLDN7 promoter in differentiating IECs and stimulated CLDN7 promoter activity. These findings support a role of hepatocyte nuclear factor 4α in controlling claudin-7 expression during IEC differentiation.


Asunto(s)
Diferenciación Celular/genética , Claudinas/metabolismo , Células Epiteliales/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Mucosa Intestinal/metabolismo , Células CACO-2 , Claudinas/genética , Células Epiteliales/citología , Regulación de la Expresión Génica , Células HT29 , Factor Nuclear 4 del Hepatocito/genética , Humanos , Mucosa Intestinal/citología , Regiones Promotoras Genéticas
20.
Am J Pathol ; 185(2): 372-86, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25438062

RESUMEN

Epithelial barrier function is maintained by tight junction proteins that control paracellular fluid flux. Among these proteins is junctional adhesion molecule A (JAM-A), an Ig fold transmembrane protein. To assess JAM-A function in the lung, we depleted JAM-A in primary alveolar epithelial cells using shRNA. In cultured cells, loss of JAM-A caused an approximately 30% decrease in transepithelial resistance, decreased expression of the tight junction scaffold protein zonula occludens 1, and disrupted junctional localization of the structural transmembrane protein claudin-18. Consistent with findings in other organs, loss of JAM-A decreased ß1 integrin expression and impaired filamentous actin formation. Using a model of mild systemic endoxotemia induced by i.p. injection of lipopolysaccharide, we report that JAM-A(-/-) mice showed increased susceptibility to pulmonary edema. On injury, the enhanced susceptibility of JAM-A(-/-) mice to edema correlated with increased, transient disruption of claudin-18, zonula occludens 1, and zonula occludens 2 localization to lung tight junctions in situ along with a delay in up-regulation of claudin-4. In contrast, wild-type mice showed no change in lung tight junction morphologic features in response to mild systemic endotoxemia. These findings support a key role of JAM-A in promoting tight junction homeostasis and lung barrier function by coordinating interactions among claudins, the tight junction scaffold, and the cytoskeleton.


Asunto(s)
Barrera Alveolocapilar/metabolismo , Moléculas de Adhesión Celular/metabolismo , Células Epiteliales/metabolismo , Mucosa Respiratoria/metabolismo , Uniones Estrechas/metabolismo , Animales , Barrera Alveolocapilar/citología , Moléculas de Adhesión Celular/genética , Claudinas/genética , Claudinas/metabolismo , Células Epiteliales/patología , Integrina beta1/genética , Integrina beta1/metabolismo , Ratones , Ratas , Mucosa Respiratoria/citología , Uniones Estrechas/genética , Uniones Estrechas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA