Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 593(7857): 101-107, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33828295

RESUMEN

The complete assembly of each human chromosome is essential for understanding human biology and evolution1,2. Here we use complementary long-read sequencing technologies to complete the linear assembly of human chromosome 8. Our assembly resolves the sequence of five previously long-standing gaps, including a 2.08-Mb centromeric α-satellite array, a 644-kb copy number polymorphism in the ß-defensin gene cluster that is important for disease risk, and an 863-kb variable number tandem repeat at chromosome 8q21.2 that can function as a neocentromere. We show that the centromeric α-satellite array is generally methylated except for a 73-kb hypomethylated region of diverse higher-order α-satellites enriched with CENP-A nucleosomes, consistent with the location of the kinetochore. In addition, we confirm the overall organization and methylation pattern of the centromere in a diploid human genome. Using a dual long-read sequencing approach, we complete high-quality draft assemblies of the orthologous centromere from chromosome 8 in chimpanzee, orangutan and macaque to reconstruct its evolutionary history. Comparative and phylogenetic analyses show that the higher-order α-satellite structure evolved in the great ape ancestor with a layered symmetry, in which more ancient higher-order repeats locate peripherally to monomeric α-satellites. We estimate that the mutation rate of centromeric satellite DNA is accelerated by more than 2.2-fold compared to the unique portions of the genome, and this acceleration extends into the flanking sequence.


Asunto(s)
Cromosomas Humanos Par 8/química , Cromosomas Humanos Par 8/genética , Evolución Molecular , Animales , Línea Celular , Centrómero/química , Centrómero/genética , Centrómero/metabolismo , Cromosomas Humanos Par 8/fisiología , Metilación de ADN , ADN Satélite/genética , Epigénesis Genética , Femenino , Humanos , Macaca mulatta/genética , Masculino , Repeticiones de Minisatélite/genética , Pan troglodytes/genética , Filogenia , Pongo abelii/genética , Telómero/química , Telómero/genética , Telómero/metabolismo
2.
Nature ; 585(7823): 79-84, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32663838

RESUMEN

After two decades of improvements, the current human reference genome (GRCh38) is the most accurate and complete vertebrate genome ever produced. However, no single chromosome has been finished end to end, and hundreds of unresolved gaps persist1,2. Here we present a human genome assembly that surpasses the continuity of GRCh382, along with a gapless, telomere-to-telomere assembly of a human chromosome. This was enabled by high-coverage, ultra-long-read nanopore sequencing of the complete hydatidiform mole CHM13 genome, combined with complementary technologies for quality improvement and validation. Focusing our efforts on the human X chromosome3, we reconstructed the centromeric satellite DNA array (approximately 3.1 Mb) and closed the 29 remaining gaps in the current reference, including new sequences from the human pseudoautosomal regions and from cancer-testis ampliconic gene families (CT-X and GAGE). These sequences will be integrated into future human reference genome releases. In addition, the complete chromosome X, combined with the ultra-long nanopore data, allowed us to map methylation patterns across complex tandem repeats and satellite arrays. Our results demonstrate that finishing the entire human genome is now within reach, and the data presented here will facilitate ongoing efforts to complete the other human chromosomes.


Asunto(s)
Cromosomas Humanos X/genética , Genoma Humano/genética , Telómero/genética , Centrómero/genética , Islas de CpG/genética , Metilación de ADN , ADN Satélite/genética , Femenino , Humanos , Mola Hidatiforme/genética , Masculino , Embarazo , Reproducibilidad de los Resultados , Testículo/metabolismo
3.
PLoS Genet ; 16(10): e1008926, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33090996

RESUMEN

The domestic cat (Felis catus) numbers over 94 million in the USA alone, occupies households as a companion animal, and, like humans, suffers from cancer and common and rare diseases. However, genome-wide sequence variant information is limited for this species. To empower trait analyses, a new cat genome reference assembly was developed from PacBio long sequence reads that significantly improve sequence representation and assembly contiguity. The whole genome sequences of 54 domestic cats were aligned to the reference to identify single nucleotide variants (SNVs) and structural variants (SVs). Across all cats, 16 SNVs predicted to have deleterious impacts and in a singleton state were identified as high priority candidates for causative mutations. One candidate was a stop gain in the tumor suppressor FBXW7. The SNV is found in cats segregating for feline mediastinal lymphoma and is a candidate for inherited cancer susceptibility. SV analysis revealed a complex deletion coupled with a nearby potential duplication event that was shared privately across three unrelated cats with dwarfism and is found within a known dwarfism associated region on cat chromosome B1. This SV interrupted UDP-glucose 6-dehydrogenase (UGDH), a gene involved in the biosynthesis of glycosaminoglycans. Importantly, UGDH has not yet been associated with human dwarfism and should be screened in undiagnosed patients. The new high-quality cat genome reference and the compilation of sequence variation demonstrate the importance of these resources when searching for disease causative alleles in the domestic cat and for identification of feline biomedical models.


Asunto(s)
Enanismo/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Genoma/genética , Uridina Difosfato Glucosa Deshidrogenasa/genética , Secuenciación Completa del Genoma , Alelos , Animales , Gatos , Mapeo Cromosómico , Predisposición Genética a la Enfermedad , Genómica , Humanos , Masculino , Anotación de Secuencia Molecular , Filogenia , Polimorfismo de Nucleótido Simple/genética
4.
Genome Res ; 27(5): 849-864, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28396521

RESUMEN

The human reference genome assembly plays a central role in nearly all aspects of today's basic and clinical research. GRCh38 is the first coordinate-changing assembly update since 2009; it reflects the resolution of roughly 1000 issues and encompasses modifications ranging from thousands of single base changes to megabase-scale path reorganizations, gap closures, and localization of previously orphaned sequences. We developed a new approach to sequence generation for targeted base updates and used data from new genome mapping technologies and single haplotype resources to identify and resolve larger assembly issues. For the first time, the reference assembly contains sequence-based representations for the centromeres. We also expanded the number of alternate loci to create a reference that provides a more robust representation of human population variation. We demonstrate that the updates render the reference an improved annotation substrate, alter read alignments in unchanged regions, and impact variant interpretation at clinically relevant loci. We additionally evaluated a collection of new de novo long-read haploid assemblies and conclude that although the new assemblies compare favorably to the reference with respect to continuity, error rate, and gene completeness, the reference still provides the best representation for complex genomic regions and coding sequences. We assert that the collected updates in GRCh38 make the newer assembly a more robust substrate for comprehensive analyses that will promote our understanding of human biology and advance our efforts to improve health.


Asunto(s)
Mapeo Contig/métodos , Genoma Humano , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Mapeo Contig/normas , Genómica/normas , Haploidia , Haplotipos , Humanos , Polimorfismo Genético , Estándares de Referencia , Análisis de Secuencia de ADN/normas
5.
Genome Res ; 26(11): 1453-1467, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27803192

RESUMEN

Recurrent rearrangements of Chromosome 8p23.1 are associated with congenital heart defects and developmental delay. The complexity of this region has led to inconsistencies in the current reference assembly, confounding studies of genetic variation. Using comparative sequence-based approaches, we generated a high-quality 6.3-Mbp alternate reference assembly of an inverted Chromosome 8p23.1 haplotype. Comparison with nonhuman primates reveals a 746-kbp duplicative transposition and two separate inversion events that arose in the last million years of human evolution. The breakpoints associated with these rearrangements map to an ape-specific interchromosomal core duplicon that clusters at sites of evolutionary inversion (P = 7.8 × 10-5). Refinement of microdeletion breakpoints identifies a subgroup of patients that map to the same interchromosomal core involved in the evolutionary formation of the duplication blocks. Our results define a higher-order genomic instability element that has shaped the structure of specific chromosomes during primate evolution contributing to rearrangements associated with inversion and disease.


Asunto(s)
Evolución Molecular , Predisposición Genética a la Enfermedad , Inestabilidad Genómica , Duplicaciones Segmentarias en el Genoma , Animales , Puntos de Rotura del Cromosoma , Deleción Cromosómica , Cromosomas Humanos Par 8/genética , Humanos , Primates/genética
6.
Genome Res ; 25(12): 1921-33, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26377836

RESUMEN

We describe a genome reference of the African green monkey or vervet (Chlorocebus aethiops). This member of the Old World monkey (OWM) superfamily is uniquely valuable for genetic investigations of simian immunodeficiency virus (SIV), for which it is the most abundant natural host species, and of a wide range of health-related phenotypes assessed in Caribbean vervets (C. a. sabaeus), whose numbers have expanded dramatically since Europeans introduced small numbers of their ancestors from West Africa during the colonial era. We use the reference to characterize the genomic relationship between vervets and other primates, the intra-generic phylogeny of vervet subspecies, and genome-wide structural variations of a pedigreed C. a. sabaeus population. Through comparative analyses with human and rhesus macaque, we characterize at high resolution the unique chromosomal fission events that differentiate the vervets and their close relatives from most other catarrhine primates, in whom karyotype is highly conserved. We also provide a summary of transposable elements and contrast these with the rhesus macaque and human. Analysis of sequenced genomes representing each of the main vervet subspecies supports previously hypothesized relationships between these populations, which range across most of sub-Saharan Africa, while uncovering high levels of genetic diversity within each. Sequence-based analyses of major histocompatibility complex (MHC) polymorphisms reveal extremely low diversity in Caribbean C. a. sabaeus vervets, compared to vervets from putatively ancestral West African regions. In the C. a. sabaeus research population, we discover the first structural variations that are, in some cases, predicted to have a deleterious effect; future studies will determine the phenotypic impact of these variations.


Asunto(s)
Chlorocebus aethiops/genética , Genoma , Genómica , Animales , Chlorocebus aethiops/clasificación , Pintura Cromosómica , Biología Computacional/métodos , Evolución Molecular , Reordenamiento Génico , Variación Genética , Genómica/métodos , Cariotipo , Complejo Mayor de Histocompatibilidad/genética , Anotación de Secuencia Molecular , Filogenia , Filogeografía
7.
Science ; 376(6588): 44-53, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35357919

RESUMEN

Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion-base pair sequence of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces nearly 200 million base pairs of sequence containing 1956 gene predictions, 99 of which are predicted to be protein coding. The completed regions include all centromeric satellite arrays, recent segmental duplications, and the short arms of all five acrocentric chromosomes, unlocking these complex regions of the genome to variational and functional studies.


Asunto(s)
Genoma Humano , Proyecto Genoma Humano , Análisis de Secuencia de ADN/normas , Línea Celular , Cromosomas Artificiales Bacterianos/genética , Cromosomas Humanos/genética , Humanos , Valores de Referencia
8.
Nat Commun ; 12(1): 1447, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664263

RESUMEN

Identifying the genetic factors that underlie complex traits is central to understanding the mechanistic underpinnings of evolution. Cave-dwelling Astyanax mexicanus populations are well adapted to subterranean life and many populations appear to have evolved troglomorphic traits independently, while the surface-dwelling populations can be used as a proxy for the ancestral form. Here we present a high-resolution, chromosome-level surface fish genome, enabling the first genome-wide comparison between surface fish and cavefish populations. Using this resource, we performed quantitative trait locus (QTL) mapping analyses and found new candidate genes for eye loss such as dusp26. We used CRISPR gene editing in A. mexicanus to confirm the essential role of a gene within an eye size QTL, rx3, in eye formation. We also generated the first genome-wide evaluation of deletion variability across cavefish populations to gain insight into this potential source of cave adaptation. The surface fish genome reference now provides a more complete resource for comparative, functional and genetic studies of drastic trait differences within a species.


Asunto(s)
Adaptación Fisiológica/genética , Characidae/embriología , Characidae/genética , Ojo/embriología , Herencia Multifactorial/genética , Animales , Evolución Biológica , Cuevas , Mapeo Cromosómico , Evolución Molecular , Edición Génica , Genoma/genética , Proteínas de Homeodominio/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Sitios de Carácter Cuantitativo/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-32532883

RESUMEN

We present a case of 9p- syndrome with a complex chromosomal event originally characterized by the classical karyotype approach as 46,XX,der(9)t(9;13)(p23;q13). We used advanced technologies (Bionano Genomics genome imaging and 10× Genomics sequencing) to characterize the location of the translocation and accompanying deletion on Chromosome 9 and duplication on Chromosome 13 with single-nucleotide breakpoint resolution. The translocation breakpoint was at Chr 9:190938 and Chr 13:50850492, the deletion at Chr 9:1-190938, and the duplication at Chr 13:50850492-114364328. We identified genes in the deletion and duplication regions that are known to be associated with this patient's phenotype (e.g., ZIC2 in dysmorphic facial features, FOXD4 in developmental delay, RNASEH2B in developmental delay, and PCDH9 in autism). Our results indicate that clinical genomic assessment of individuals with complex karyotypes can be refined to a single-base-pair resolution when utilizing Bionano and 10× Genomics sequencing. With the 10× Genomics data, we were also able to characterize other variation (e.g., loss of function) throughout the remainder of the patient's genome. Overall, the Bionano and 10× technologies complemented each other and provided important insight into our patient with 9p- syndrome. Altogether, these results indicate that newer technologies can identify precise genomic variants associated with unique patient phenotypes that permit discovery of novel genotype-phenotype correlations and therapeutic strategies.


Asunto(s)
Puntos de Rotura del Cromosoma , Genómica , Translocación Genética , Niño , Deleción Cromosómica , Duplicación Cromosómica , Mapeo Cromosómico , Cromosomas Humanos Par 9/genética , Hibridación Genómica Comparativa , Femenino , Genómica/métodos , Humanos , Cariotipo , Mutación con Pérdida de Función , Fenotipo , Análisis de Secuencia de ADN
10.
Science ; 370(6523)2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33335035

RESUMEN

The rhesus macaque (Macaca mulatta) is the most widely studied nonhuman primate (NHP) in biomedical research. We present an updated reference genome assembly (Mmul_10, contig N50 = 46 Mbp) that increases the sequence contiguity 120-fold and annotate it using 6.5 million full-length transcripts, thus improving our understanding of gene content, isoform diversity, and repeat organization. With the improved assembly of segmental duplications, we discovered new lineage-specific genes and expanded gene families that are potentially informative in studies of evolution and disease susceptibility. Whole-genome sequencing (WGS) data from 853 rhesus macaques identified 85.7 million single-nucleotide variants (SNVs) and 10.5 million indel variants, including potentially damaging variants in genes associated with human autism and developmental delay, providing a framework for developing noninvasive NHP models of human disease.


Asunto(s)
Predisposición Genética a la Enfermedad , Genoma , Macaca mulatta/genética , Polimorfismo de Nucleótido Simple , Animales , Variación Genética , Humanos , Anotación de Secuencia Molecular , Secuenciación Completa del Genoma
12.
G3 (Bethesda) ; 7(1): 109-117, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27852011

RESUMEN

The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3), built from combined long single molecule sequencing technology, finished BACs, and improved physical maps. In overall assembled bases, we see a gain of 183 Mb, including 16.4 Mb in placed chromosomes with a corresponding gain in the percentage of intact repeat elements characterized. Of the 1.21 Gb genome, we include three previously missing autosomes, GGA30, 31, and 33, and improve sequence contig length 10-fold over the previous Gallus_gallus-4.0. Despite the significant base representation improvements made, 138 Mb of sequence is not yet located to chromosomes. When annotated for gene content, Gallus_gallus-5.0 shows an increase of 4679 annotated genes (2768 noncoding and 1911 protein-coding) over those in Gallus_gallus-4.0. We also revisited the question of what genes are missing in the avian lineage, as assessed by the highest quality avian genome assembly to date, and found that a large fraction of the original set of missing genes are still absent in sequenced bird species. Finally, our new data support a detailed map of MHC-B, encompassing two segments: one with a highly stable gene copy number and another in which the gene copy number is highly variable. The chicken model has been a critical resource for many other fields of study, and this new reference assembly will substantially further these efforts.


Asunto(s)
Pollos/genética , Genoma/genética , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , Animales , Cromosomas Artificiales Bacterianos , Biología Computacional , Mapeo Contig
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA