Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(8): 1626-1642, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39013459

RESUMEN

Trithorax-related H3K4 methyltransferases, KMT2C and KMT2D, are critical epigenetic modifiers. Haploinsufficiency of KMT2C was only recently recognized as a cause of neurodevelopmental disorder (NDD), so the clinical and molecular spectrums of the KMT2C-related NDD (now designated as Kleefstra syndrome 2) are largely unknown. We ascertained 98 individuals with rare KMT2C variants, including 75 with protein-truncating variants (PTVs). Notably, ∼15% of KMT2C PTVs were inherited. Although the most highly expressed KMT2C transcript consists of only the last four exons, pathogenic PTVs were found in almost all the exons of this large gene. KMT2C variant interpretation can be challenging due to segmental duplications and clonal hematopoesis-induced artifacts. Using samples from 27 affected individuals, divided into discovery and validation cohorts, we generated a moderate strength disorder-specific KMT2C DNA methylation (DNAm) signature and demonstrate its utility in classifying non-truncating variants. Based on 81 individuals with pathogenic/likely pathogenic variants, we demonstrate that the KMT2C-related NDD is characterized by developmental delay, intellectual disability, behavioral and psychiatric problems, hypotonia, seizures, short stature, and other comorbidities. The facial module of PhenoScore, applied to photographs of 34 affected individuals, reveals that the KMT2C-related facial gestalt is significantly different from the general NDD population. Finally, using PhenoScore and DNAm signatures, we demonstrate that the KMT2C-related NDD is clinically and epigenetically distinct from Kleefstra and Kabuki syndromes. Overall, we define the clinical features, molecular spectrum, and DNAm signature of the KMT2C-related NDD and demonstrate they are distinct from Kleefstra and Kabuki syndromes highlighting the need to rename this condition.


Asunto(s)
Anomalías Múltiples , Deleción Cromosómica , Cromosomas Humanos Par 9 , Anomalías Craneofaciales , Metilación de ADN , Proteínas de Unión al ADN , Cara , Enfermedades Hematológicas , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Enfermedades Vestibulares , Humanos , Anomalías Múltiples/genética , Enfermedades Vestibulares/genética , Discapacidad Intelectual/genética , Cara/anomalías , Cara/patología , Proteínas de Unión al ADN/genética , Masculino , Femenino , Enfermedades Hematológicas/genética , Trastornos del Neurodesarrollo/genética , Anomalías Craneofaciales/genética , Cromosomas Humanos Par 9/genética , Niño , Metilación de ADN/genética , Preescolar , Proteínas de Neoplasias/genética , Adolescente , Hipertricosis/genética , Mutación , Insuficiencia de Crecimiento/genética , N-Metiltransferasa de Histona-Lisina/genética , Cardiopatías Congénitas
2.
Am J Hum Genet ; 110(8): 1377-1393, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37451268

RESUMEN

Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2. Here, we describe a neurodevelopmental disorder associated with an increase in the production of PI(4,5)P2 and with PI-signaling dysfunction. We identified three de novo heterozygous missense variants in PIP5K1C, which encodes an isoform of the phosphatidylinositol 4-phosphate 5-kinase (PIP5KIγ), in nine unrelated children exhibiting intellectual disability, developmental delay, acquired microcephaly, seizures, visual abnormalities, and dysmorphic features. We provide evidence that the PIP5K1C variants result in an increase of the endosomal PI(4,5)P2 pool, giving rise to ectopic recruitment of filamentous actin at early endosomes (EEs) that in turn causes dysfunction in EE trafficking. In addition, we generated an in vivo zebrafish model that recapitulates the disorder we describe with developmental defects affecting the forebrain, including the eyes, as well as craniofacial abnormalities, further demonstrating the pathogenic effect of the PIP5K1C variants.


Asunto(s)
Discapacidad Intelectual , Fosfatidilinositoles , Animales , Síndrome , Actinas , Pez Cebra/genética , Discapacidad Intelectual/genética , Monoéster Fosfórico Hidrolasas/genética , Fosfatos de Fosfatidilinositol
3.
Brain ; 146(8): 3513-3527, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36917474

RESUMEN

RNA polymerase I transcribes ribosomal DNA to produce precursor 47S rRNA. Post-transcriptional processing of this rRNA generates mature 28S, 18S and 5.8S rRNAs, which form the ribosomes, together with 5S rRNA, assembly factors and ribosomal proteins. We previously reported a homozygous variant in the catalytic subunit of RNA polymerase I, POLR1A, in two brothers with leukodystrophy and progressive course. However, the disease mechanism remained unknown. In this report, we describe another missense variant POLR1A NM_015425.3:c.1925C>A; p.(Thr642Asn) in homozygosity in two unrelated patients. Patient 1 was a 16-year-old male and Patient 2 was a 2-year-old female. Both patients manifested neurological deficits, with brain MRIs showing hypomyelinating leukodystrophy and cerebellar atrophy; and in Patient 1 additionally with hypointensity of globi pallidi and small volume of the basal ganglia. Patient 1 had progressive disease course, leading to death at the age of 16.5 years. Extensive in vitro experiments in fibroblasts from Patient 1 documented that the mutated POLR1A led to aberrant rRNA processing and degradation, and abnormal nucleolar homeostasis. Proteomics data analyses and further in vitro experiments documented abnormal protein homeostasis, and endoplasmic reticulum stress responses. We confirm that POLR1A biallelic variants cause neurodegenerative disease, expand the knowledge of the clinical phenotype of the disorder, and provide evidence for possible pathological mechanisms leading to POLR1A-related leukodystrophy.


Asunto(s)
Enfermedades Neurodegenerativas , ARN Polimerasa I , Masculino , Femenino , Humanos , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Enfermedades Neurodegenerativas/genética , Proteostasis , ARN Ribosómico/metabolismo , Ribosomas , Procesamiento Postranscripcional del ARN
4.
Am J Hum Genet ; 105(2): 403-412, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31303265

RESUMEN

POU3F3, also referred to as Brain-1, is a well-known transcription factor involved in the development of the central nervous system, but it has not previously been associated with a neurodevelopmental disorder. Here, we report the identification of 19 individuals with heterozygous POU3F3 disruptions, most of which are de novo variants. All individuals had developmental delays and/or intellectual disability and impairments in speech and language skills. Thirteen individuals had characteristic low-set, prominent, and/or cupped ears. Brain abnormalities were observed in seven of eleven MRI reports. POU3F3 is an intronless gene, insensitive to nonsense-mediated decay, and 13 individuals carried protein-truncating variants. All truncating variants that we tested in cellular models led to aberrant subcellular localization of the encoded protein. Luciferase assays demonstrated negative effects of these alleles on transcriptional activation of a reporter with a FOXP2-derived binding motif. In addition to the loss-of-function variants, five individuals had missense variants that clustered at specific positions within the functional domains, and one small in-frame deletion was identified. Two missense variants showed reduced transactivation capacity in our assays, whereas one variant displayed gain-of-function effects, suggesting a distinct pathophysiological mechanism. In bioluminescence resonance energy transfer (BRET) interaction assays, all the truncated POU3F3 versions that we tested had significantly impaired dimerization capacities, whereas all missense variants showed unaffected dimerization with wild-type POU3F3. Taken together, our identification and functional cell-based analyses of pathogenic variants in POU3F3, coupled with a clinical characterization, implicate disruptions of this gene in a characteristic neurodevelopmental disorder.


Asunto(s)
Regulación de la Expresión Génica , Mutación , Trastornos del Neurodesarrollo/etiología , Factores del Dominio POU/genética , Activación Transcripcional , Secuencia de Aminoácidos , Niño , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Trastornos del Neurodesarrollo/patología , Factores del Dominio POU/química , Conformación Proteica , Homología de Secuencia
5.
Am J Hum Genet ; 104(6): 1210-1222, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31079897

RESUMEN

We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities.


Asunto(s)
Proteínas de Unión al ADN/genética , Epilepsia/etiología , Variación Genética , Heterocigoto , Trastornos del Neurodesarrollo/etiología , Adolescente , Adulto , Niño , Preescolar , Epilepsia/patología , Femenino , Haploinsuficiencia , Humanos , Lactante , Masculino , Trastornos del Neurodesarrollo/patología , Linaje , Fenotipo , Adulto Joven
6.
Brain ; 144(12): 3635-3650, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34114611

RESUMEN

Variants in KCNT1, encoding a sodium-gated potassium channel (subfamily T member 1), have been associated with a spectrum of epilepsies and neurodevelopmental disorders. These range from familial autosomal dominant or sporadic sleep-related hypermotor epilepsy to epilepsy of infancy with migrating focal seizures (EIMFS) and include developmental and epileptic encephalopathies. This study aims to provide a comprehensive overview of the phenotypic and genotypic spectrum of KCNT1 mutation-related epileptic disorders in 248 individuals, including 66 previously unpublished and 182 published cases, the largest cohort reported so far. Four phenotypic groups emerged from our analysis: (i) EIMFS (152 individuals, 33 previously unpublished); (ii) developmental and epileptic encephalopathies other than EIMFS (non-EIMFS developmental and epileptic encephalopathies) (37 individuals, 17 unpublished); (iii) autosomal dominant or sporadic sleep-related hypermotor epilepsy (53 patients, 14 unpublished); and (iv) other phenotypes (six individuals, two unpublished). In our cohort of 66 new cases, the most common phenotypic features were: (i) in EIMFS, heterogeneity of seizure types, including epileptic spasms, epilepsy improvement over time, no epilepsy-related deaths; (ii) in non-EIMFS developmental and epileptic encephalopathies, possible onset with West syndrome, occurrence of atypical absences, possible evolution to developmental and epileptic encephalopathies with sleep-related hypermotor epilepsy features; one case of sudden unexplained death in epilepsy; (iii) in autosomal dominant or sporadic sleep-related hypermotor epilepsy, we observed a high prevalence of drug-resistance, although seizure frequency improved with age in some individuals, appearance of cognitive regression after seizure onset in all patients, no reported severe psychiatric disorders, although behavioural/psychiatric comorbidities were reported in ∼50% of the patients, sudden unexplained death in epilepsy in one individual; and (iv) other phenotypes in individuals with mutation of KCNT1 included temporal lobe epilepsy, and epilepsy with tonic-clonic seizures and cognitive regression. Genotypic analysis of the whole cohort of 248 individuals showed only missense mutations and one inframe deletion in KCNT1. Although the KCNT1 mutations in affected individuals were seen to be distributed among the different domains of the KCNT1 protein, genotype-phenotype considerations showed many of the autosomal dominant or sporadic sleep-related hypermotor epilepsy-associated mutations to be clustered around the RCK2 domain in the C terminus, distal to the NADP domain. Mutations associated with EIMFS/non-EIMFS developmental and epileptic encephalopathies did not show a particular pattern of distribution in the KCNT1 protein. Recurrent KCNT1 mutations were seen to be associated with both severe and less severe phenotypes. Our study further defines and broadens the phenotypic and genotypic spectrums of KCNT1-related epileptic conditions and emphasizes the increasingly important role of this gene in the pathogenesis of early onset developmental and epileptic encephalopathies as well as of focal epilepsies, namely autosomal dominant or sporadic sleep-related hypermotor epilepsy.


Asunto(s)
Epilepsia/genética , Proteínas del Tejido Nervioso/genética , Canales de potasio activados por Sodio/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Genotipo , Humanos , Lactante , Masculino , Mutación , Fenotipo , Adulto Joven
7.
Hum Mutat ; 42(4): 473-486, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33600043

RESUMEN

Hypomagnesemia, seizures, and intellectual disability (HSMR) syndrome is a rare disorder caused by mutations in the cyclin M2 (CNNM2) gene. Due to the limited number of cases, extensive phenotype analyses of these patients have not been performed, hindering early recognition of patients. In this study, we established the largest cohort of HSMR to date, aiming to improve recognition and diagnosis of this complex disorder. Eleven novel variants in CNNM2 were identified in nine single sporadic cases and in two families with suspected HSMR syndrome. 25 Mg2+ uptake assays demonstrated loss-of-function in seven out of nine variants in CNNM2. Interestingly, the pathogenic mutations resulted in decreased plasma membrane expression. The phenotype of those affected by pathogenic CNNM2 mutations was compared with five previously reported cases of HSMR. All patients suffered from hypomagnesemia (0.44-0.72 mmol/L), which could not be fully corrected by Mg2+ supplementation. The majority of patients (77%) experienced generalized seizures and exhibited mild to moderate intellectual disability and speech delay. Moreover, severe obesity was present in most patients (89%). Our data establish hypomagnesemia, seizures, intellectual disability, and obesity as hallmarks of HSMR syndrome. The assessment of these major features offers a straightforward tool for the clinical diagnosis of HSMR.


Asunto(s)
Proteínas de Transporte de Catión , Discapacidad Intelectual , Proteínas de Transporte de Catión/genética , Ciclinas/genética , Heterocigoto , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Mutación , Fenotipo
8.
Hum Mol Genet ; 28(1): 96-104, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239721

RESUMEN

Loss-of-function mutations in glutaminase (GLS), the enzyme converting glutamine into glutamate, and the counteracting enzyme glutamine synthetase (GS) cause disturbed glutamate homeostasis and severe neonatal encephalopathy. We report a de novo Ser482Cys gain-of-function variant in GLS encoding GLS associated with profound developmental delay and infantile cataract. Functional analysis demonstrated that this variant causes hyperactivity and compensatory downregulation of GLS expression combined with upregulation of the counteracting enzyme GS, supporting pathogenicity. Ser482Cys-GLS likely improves the electrostatic environment of the GLS catalytic site, thereby intrinsically inducing hyperactivity. Alignment of +/-12.000 GLS protein sequences from >1000 genera revealed extreme conservation of Ser482 to the same degree as catalytic residues. Together with the hyperactivity, this indicates that Ser482 is evolutionarily preserved to achieve optimal-but submaximal-GLS activity. In line with GLS hyperactivity, increased glutamate and decreased glutamine concentrations were measured in urine and fibroblasts. In the brain (both grey and white matter), glutamate was also extremely high and glutamine was almost undetectable, demonstrated with magnetic resonance spectroscopic imaging at clinical field strength and subsequently supported at ultra-high field strength. Considering the neurotoxicity of glutamate when present in excess, the strikingly high glutamate concentrations measured in the brain provide an explanation for the developmental delay. Cataract, a known consequence of oxidative stress, was evoked in zebrafish expressing the hypermorphic Ser482Cys-GLS and could be alleviated by inhibition of GLS. The capacity to detoxify reactive oxygen species was reduced upon Ser482Cys-GLS expression, providing an explanation for cataract formation. In conclusion, we describe an inborn error of glutamate metabolism caused by a GLS hyperactivity variant, illustrating the importance of balanced GLS activity.


Asunto(s)
Glutaminasa/genética , Glutaminasa/fisiología , Adolescente , Animales , Encéfalo/metabolismo , Catarata/genética , Preescolar , Discapacidades del Desarrollo/genética , Modelos Animales de Enfermedad , Femenino , Fibroblastos , Mutación con Ganancia de Función/genética , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/fisiología , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Masculino , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra
9.
Am J Med Genet A ; 182(1): 229-249, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31710777

RESUMEN

Joubert syndrome (JS) is a recessive neurodevelopmental disorder defined by a characteristic cerebellar and brainstem malformation recognizable on axial brain magnetic resonance imaging as the "Molar Tooth Sign". Although defined by the neurological features, JS is associated with clinical features affecting many other organ systems, particularly progressive involvement of the retina, kidney, and liver. JS is a rare condition; therefore, many affected individuals may not have easy access to subspecialty providers familiar with JS (e.g., geneticists, neurologists, developmental pediatricians, ophthalmologists, nephrologists, hepatologists, psychiatrists, therapists, and educators). Expert recommendations can enable practitioners of all types to provide quality care to individuals with JS and know when to refer for subspecialty care. This need will only increase as precision treatments targeting specific genetic causes of JS emerge. The goal of these recommendations is to provide a resource for general practitioners, subspecialists, and families to maximize the health of individuals with JS throughout the lifespan.


Asunto(s)
Anomalías Múltiples/epidemiología , Cerebelo/anomalías , Anomalías del Ojo/epidemiología , Personal de Salud , Enfermedades Renales Quísticas/epidemiología , Trastornos del Neurodesarrollo/epidemiología , Retina/anomalías , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Anomalías Múltiples/terapia , Tronco Encefálico/patología , Cerebelo/patología , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Anomalías del Ojo/terapia , Directrices para la Planificación en Salud , Humanos , Riñón/patología , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Enfermedades Renales Quísticas/terapia , Hígado/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/terapia , Retina/patología
10.
Genet Med ; 21(9): 2059-2069, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30923367

RESUMEN

PURPOSE: To investigate the effect of different DEAF1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and on DEAF1 activity in vitro. METHODS: We assembled a cohort of 23 patients with de novo and biallelic DEAF1 variants, described the genotype-phenotype correlation, and investigated the differential effect of de novo and recessive variants on transcription assays using DEAF1 and Eif4g3 promoter luciferase constructs. RESULTS: The proportion of the most prevalent phenotypic features, including intellectual disability, speech delay, motor delay, autism, sleep disturbances, and a high pain threshold, were not significantly different in patients with biallelic and pathogenic de novo DEAF1 variants. However, microcephaly was exclusively observed in patients with recessive variants (p < 0.0001). CONCLUSION: We propose that different variants in the DEAF1 gene result in a phenotypic spectrum centered around neurodevelopmental delay. While a pathogenic de novo dominant variant would also incapacitate the product of the wild-type allele and result in a dominant-negative effect, a combination of two recessive variants would result in a partial loss of function. Because the clinical picture can be nonspecific, detailed phenotype information, segregation, and functional analysis are fundamental to determine the pathogenicity of novel variants and to improve the care of these patients.


Asunto(s)
Proteínas de Unión al ADN/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Microcefalia/genética , Factores de Transcripción/genética , Adolescente , Adulto , Alelos , Trastorno Autístico/genética , Trastorno Autístico/patología , Niño , Preescolar , Discapacidades del Desarrollo/patología , Exoma/genética , Femenino , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/patología , Trastornos del Desarrollo del Lenguaje/genética , Trastornos del Desarrollo del Lenguaje/patología , Masculino , Microcefalia/patología , Mutación Missense/genética , Adulto Joven
11.
Am J Med Genet A ; 176(11): 2259-2275, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30194818

RESUMEN

De novo germline mutations in GNB1 have been associated with a neurodevelopmental phenotype. To date, 28 patients with variants classified as pathogenic have been reported. We add 18 patients with de novo mutations to this cohort, including a patient with mosaicism for a GNB1 mutation who presented with a milder phenotype. Consistent with previous reports, developmental delay in these patients was moderate to severe, and more than half of the patients were non-ambulatory and nonverbal. The most observed substitution affects the p.Ile80 residue encoded in exon 6, with 28% of patients carrying a variant at this residue. Dystonia and growth delay were observed more frequently in patients carrying variants in this residue, suggesting a potential genotype-phenotype correlation. In the new cohort of 18 patients, 50% of males had genitourinary anomalies and 61% of patients had gastrointestinal anomalies, suggesting a possible association of these findings with variants in GNB1. In addition, cutaneous mastocytosis, reported once before in a patient with a GNB1 variant, was observed in three additional patients, providing further evidence for an association to GNB1. We will review clinical and molecular data of these new cases and all previously reported cases to further define the phenotype and establish possible genotype-phenotype correlations.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/genética , Estudios de Asociación Genética , Mutación/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Epilepsia/genética , Femenino , Subunidades beta de la Proteína de Unión al GTP/química , Humanos , Masculino , Sistema Nervioso/crecimiento & desarrollo , Fenotipo , Embarazo , Estructura Terciaria de Proteína
12.
Brain ; 140(11): 2879-2894, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29053855

RESUMEN

Genetic epilepsies are caused by mutations in a range of different genes, many of them encoding ion channels, receptors or transporters. While the number of detected variants and genes increased dramatically in the recent years, pleiotropic effects have also been recognized, revealing that clinical syndromes with various degrees of severity arise from a single gene, a single mutation, or from different mutations showing similar functional defects. Accordingly, several genes coding for GABAA receptor subunits have been linked to a spectrum of benign to severe epileptic disorders and it was shown that a loss of function presents the major correlated pathomechanism. Here, we identified six variants in GABRA3 encoding the α3-subunit of the GABAA receptor. This gene is located on chromosome Xq28 and has not been previously associated with human disease. Five missense variants and one microduplication were detected in four families and two sporadic cases presenting with a range of epileptic seizure types, a varying degree of intellectual disability and developmental delay, sometimes with dysmorphic features or nystagmus. The variants co-segregated mostly but not completely with the phenotype in the families, indicating in some cases incomplete penetrance, involvement of other genes, or presence of phenocopies. Overall, males were more severely affected and there were three asymptomatic female mutation carriers compared to only one male without a clinical phenotype. X-chromosome inactivation studies could not explain the phenotypic variability in females. Three detected missense variants are localized in the extracellular GABA-binding NH2-terminus, one in the M2-M3 linker and one in the M4 transmembrane segment of the α3-subunit. Functional studies in Xenopus laevis oocytes revealed a variable but significant reduction of GABA-evoked anion currents for all mutants compared to wild-type receptors. The degree of current reduction correlated partially with the phenotype. The microduplication disrupted GABRA3 expression in fibroblasts of the affected patient. In summary, our results reveal that rare loss-of-function variants in GABRA3 increase the risk for a varying combination of epilepsy, intellectual disability/developmental delay and dysmorphic features, presenting in some pedigrees with an X-linked inheritance pattern.


Asunto(s)
Encefalopatías/genética , Fisura del Paladar/genética , Discapacidades del Desarrollo/genética , Epilepsia/genética , Facies , Discapacidad Intelectual/genética , Nistagmo Patológico/genética , Receptores de GABA-A/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Femenino , Variación Genética , Humanos , Masculino , Microcefalia/genética , Mutagénesis Sitio-Dirigida , Oocitos/metabolismo , Técnicas de Placa-Clamp , Linaje , Receptores de GABA-A/metabolismo , Síndrome , Xenopus laevis , Adulto Joven , Ácido gamma-Aminobutírico/metabolismo
13.
Pediatr Nephrol ; 33(10): 1701-1712, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29974258

RESUMEN

BACKGROUND: Nephronophthisis is an autosomal recessive ciliopathy and important cause of end-stage renal disease (ESRD) in children and young adults. Diagnostic delay is frequent. This study investigates clinical characteristics, initial symptoms, and genetic defects in a cohort with nephronophthisis-related ciliopathy, to improve early detection and genetic counseling. METHODS: Forty patients from 36 families with nephronophthisis-related ciliopathy were recruited at university medical centers and online. Comprehensive clinical and genotypic data were recorded. Patients without molecular diagnosis were offered genetic analysis. RESULTS: Of 40 patients, 45% had isolated nephronophthisis, 48% syndromic diagnosis, and 7% nephronophthisis with extrarenal features not constituting a recognizable syndrome. Patients developed ESRD at median 13 years (range 5-47). Median age of symptom onset was 9 years in both isolated and syndromic forms (range 5-26 vs. 5-33). Common presenting symptoms were fatigue (42%), polydipsia/polyuria (33%), and hypertension (21%). Renal ultrasound showed small-to-normal-sized kidneys, increased echogenicity (65%), cysts (43%), and abnormal corticomedullary differentiation (32%). Renal biopsies in eight patients showed nonspecific signs of chronic kidney disease (CKD). Twenty-three patients (58%) had genetic diagnosis upon inclusion. Thirteen of those without a genetic diagnosis gave consent for genetic testing, and a cause was identified in five (38%). CONCLUSIONS: Nephronophthisis is genetically and phenotypically heterogeneous and should be considered in children and young adults presenting with persistent fatigue and polyuria, and in all patients with unexplained CKD. As symptom onset can occur into adulthood, presymptomatic monitoring of kidney function in syndromic ciliopathy patients should continue until at least age 30.


Asunto(s)
Ciliopatías/diagnóstico , Asesoramiento Genético , Pruebas Genéticas , Enfermedades Renales Quísticas/congénito , Fallo Renal Crónico/prevención & control , Proteínas Adaptadoras Transductoras de Señales/genética , Adolescente , Adulto , Edad de Inicio , Biopsia , Niño , Ciliopatías/complicaciones , Ciliopatías/genética , Ciliopatías/patología , Proteínas del Citoesqueleto , Diagnóstico Tardío/prevención & control , Femenino , Humanos , Riñón/diagnóstico por imagen , Riñón/patología , Enfermedades Renales Quísticas/complicaciones , Enfermedades Renales Quísticas/diagnóstico , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Fallo Renal Crónico/etiología , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Países Bajos , Sistema de Registros/estadística & datos numéricos , Factores de Tiempo , Ultrasonografía , Secuenciación del Exoma , Adulto Joven
14.
J Med Genet ; 53(1): 62-72, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26490104

RESUMEN

BACKGROUND: Joubert syndrome (JS) is a recessive ciliopathy characterised by a distinctive brain malformation 'the molar tooth sign'. Mutations in >27 genes cause JS, and mutations in 12 of these genes also cause Meckel-Gruber syndrome (MKS). The goals of this work are to describe the clinical features of MKS1-related JS and determine whether disease causing MKS1 mutations affect cellular phenotypes such as cilium number, length and protein content as potential mechanisms underlying JS. METHODS: We measured cilium number, length and protein content (ARL13B and INPP5E) by immunofluorescence in fibroblasts from individuals with MKS1-related JS and in a three-dimensional (3D) spheroid rescue assay to test the effects of disease-related MKS1 mutations. RESULTS: We report MKS1 mutations (eight of them previously unreported) in nine individuals with JS. A minority of the individuals with MKS1-related JS have MKS features. In contrast to the truncating mutations associated with MKS, all of the individuals with MKS1-related JS carry ≥ 1 non-truncating mutation. Fibroblasts from individuals with MKS1-related JS make normal or fewer cilia than control fibroblasts, their cilia are more variable in length than controls, and show decreased ciliary ARL13B and INPP5E. Additionally, MKS1 mutant alleles have similar effects in 3D spheroids. CONCLUSIONS: MKS1 functions in the transition zone at the base of the cilium to regulate ciliary INPP5E content, through an ARL13B-dependent mechanism. Mutations in INPP5E also cause JS, so our findings in patient fibroblasts support the notion that loss of INPP5E function, due to either mutation or mislocalisation, is a key mechanism underlying JS, downstream of MKS1 and ARL13B.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Cerebelo/anomalías , Cilios/genética , Cilios/metabolismo , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Retina/anomalías , Factores de Ribosilacion-ADP/metabolismo , Anomalías Múltiples/diagnóstico , Animales , Encéfalo/patología , Células Cultivadas , Cerebelo/metabolismo , Cilios/patología , Exones , Anomalías del Ojo/diagnóstico , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Enfermedades Renales Quísticas/diagnóstico , Imagen por Resonancia Magnética , Ratones , Modelos Biológicos , Mutación , Unión Proteica , Transporte de Proteínas , Retina/metabolismo , Tomografía Computarizada por Rayos X
15.
Proc Natl Acad Sci U S A ; 111(27): 9893-8, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24946806

RESUMEN

Nephronophthisis (NPHP) is the major cause of pediatric renal failure, yet the disease remains poorly understood, partly due to the lack of appropriate animal models. Joubert syndrome (JBTS) is an inherited ciliopathy giving rise to NPHP with cerebellar vermis aplasia and retinal degeneration. Among patients with JBTS and a cerebello-oculo-renal phenotype, mutations in CEP290 (NPHP6) are the most common genetic lesion. We present a Cep290 gene trap mouse model of JBTS that displays the kidney, eye, and brain abnormalities that define the syndrome. Mutant mice present with cystic kidney disease as neonates. Newborn kidneys contain normal amounts of lymphoid enhancer-binding factor 1 (Lef1) and transcription factor 1 (Tcf1) protein, indicating normal function of the Wnt signaling pathway; however, an increase in the protein Gli3 repressor reveals abnormal Hedgehog (Hh) signaling evident in newborn kidneys. Collecting duct cells from mutant mice have abnormal primary cilia and are unable to form spheroid structures in vitro. Treatment of mutant cells with the Hh agonist purmorphamine restored normal spheroid formation. Renal epithelial cells from a JBTS patient with CEP290 mutations showed similar impairments to spheroid formation that could also be partially rescued by exogenous stimulation of Hh signaling. These data implicate abnormal Hh signaling as the cause of NPHP and suggest that Hh agonists may be exploited therapeutically.


Asunto(s)
Enfermedades Cerebelosas/metabolismo , Anomalías del Ojo/metabolismo , Proteínas Hedgehog/metabolismo , Enfermedades Renales Quísticas/congénito , Retina/anomalías , Transducción de Señal , Anomalías Múltiples , Animales , Antígenos de Neoplasias , Proteínas de Ciclo Celular , Cerebelo/anomalías , Proteínas del Citoesqueleto , Técnica del Anticuerpo Fluorescente , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/terapia , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Retina/metabolismo
16.
Genet Med ; 18(9): 882-91, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26765342

RESUMEN

PURPOSE: The Ehlers-Danlos syndrome (EDS), dermatosparaxis type, is a recessively inherited connective tissue disorder caused by deficient activity of ADAMTS-2, an enzyme that cleaves the aminoterminal propeptide domain of types I, II, and III procollagen. Only 10 EDS dermatosparaxis patients have been reported, all presenting a recognizable phenotype with characteristic facial gestalt, extreme skin fragility and laxity, excessive bruising, and sometimes major complications due to visceral and vascular fragility. METHODS: We report on five new EDS dermatosparaxis patients and provide a comprehensive overview of the current knowledge of the natural history of this condition. RESULTS: We identified three novel homozygous loss-of-function mutations (c.2927_2928delCT, p.(Pro976Argfs*42); c.669_670dupG, p.(Pro224Argfs*24); and c.2751-2A>T) and one compound heterozygous mutation (c.2T>C, p.? and c.884_887delTGAA, p.(Met295Thrfs26*)) in ADAMTS2 in five patients from four unrelated families. Three of these displayed a phenotype that was strikingly milder than that of previously reported patients. CONCLUSION: This study expands the clinical and molecular spectrum of the dermatosparaxis type of EDS to include a milder phenotypic variant and stresses the importance of good clinical criteria. To address this, we propose an updated set of criteria that accurately captures the multisystemic nature of the dermatosparaxis type of EDS.Genet Med 18 9, 882-891.


Asunto(s)
Proteínas ADAMTS/genética , Síndrome de Ehlers-Danlos/genética , Adolescente , Adulto , Niño , Preescolar , Síndrome de Ehlers-Danlos/complicaciones , Síndrome de Ehlers-Danlos/patología , Femenino , Humanos , Masculino , Mutación , Fenotipo
17.
Genet Med ; 18(9): 949-56, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26845106

RESUMEN

PURPOSE: This study investigated whole-exome sequencing (WES) yield in a subset of intellectually disabled patients referred to our clinical diagnostic center and calculated the total costs of these patients' diagnostic trajectory in order to evaluate early WES implementation. METHODS: We compared 17 patients' trio-WES yield with the retrospective costs of diagnostic procedures by comprehensively examining patient records and collecting resource use information for each patient, beginning with patient admittance and concluding with WES initiation. We calculated cost savings using scenario analyses to evaluate the costs replaced by WES when used as a first diagnostic tool. RESULTS: WES resulted in diagnostically useful outcomes in 29.4% of patients. The entire traditional diagnostic trajectory average cost was $16,409 per patient, substantially higher than the $3,972 trio-WES cost. WES resulted in average cost savings of $3,547 for genetic and metabolic investigations in diagnosed patients and $1,727 for genetic investigations in undiagnosed patients. CONCLUSION: The increased causal variant detection yield by WES and the relatively high costs of the entire traditional diagnostic trajectory suggest that early implementation of WES is a relevant and cost-efficient option in patient diagnostics. This information is crucial for centers considering implementation of WES and serves as input for future value-based research into diagnostics.Genet Med 18 9, 949-956.


Asunto(s)
Secuenciación del Exoma/métodos , Pruebas Genéticas/economía , Secuenciación de Nucleótidos de Alto Rendimiento , Discapacidad Intelectual/diagnóstico , Costos y Análisis de Costo , Exoma , Femenino , Humanos , Discapacidad Intelectual/economía , Discapacidad Intelectual/genética , Masculino , Análisis de Secuencia de ADN , Secuenciación del Exoma/economía
18.
Nat Genet ; 39(7): 882-8, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17558407

RESUMEN

Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-Løken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis. We show that RPGRIP1L interacts with nephrocystin-4 and that mutations in the gene encoding nephrocystin-4 (NPHP4) that are known to cause SLSN disrupt this interaction. RPGRIP1L is ubiquitously expressed, and its protein product localizes to basal bodies. Therefore, we analyzed RPGRIP1L as a candidate gene for JBTS and identified loss-of-function mutations in three families with typical JBTS, including the characteristic mid-hindbrain malformation. This work identifies RPGRIP1L as a gene responsible for JBTS and establishes a central role for cilia and basal bodies in the pathophysiology of this disorder.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedades Cerebelosas/genética , Cilios/genética , Trastornos de la Motilidad Ciliar/genética , Oftalmopatías/genética , Enfermedades Renales/genética , Proteínas/genética , Proteínas/metabolismo , Adulto , Animales , Línea Celular , Proteínas del Citoesqueleto , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Ratas , Síndrome
19.
Trends Genet ; 27(2): 41-7, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21190750

RESUMEN

Despite extensive debate, there is no consensus on whether individual genetic data should be disclosed to research participants. The emergence of whole-genome sequencing methods is increasingly generating unequalled amounts of genetic data, making the need for a clear feedback policy even more urgent. In this debate two positions can be broadly discerned: a restrictive disclosure policy ('no feedback except life-saving data') and an intermediate policy of qualified disclosure ('feedback if the results meet certain conditions'). We explain both positions and present the principal underlying arguments. We suggest that the debate should no longer address whether genetic research results should be returned, but instead how best to make an appropriate selection and how to strike a balance between the possible benefits of disclosure and the harms of unduly hindering biomedical research.


Asunto(s)
Bases de Datos Genéticas , Investigación Genética , Investigación Biomédica , Revelación , Humanos
20.
Eur J Hum Genet ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806661

RESUMEN

INPP5E encodes inositol polyphosphate-5-phosphatase E, an enzyme involved in regulating the phosphatidylinositol (PIP) makeup of the primary cilium membrane. Pathogenic variants in INPP5E hence cause a variety of ciliopathies: genetic disorders caused by dysfunctional cilia. While the majority of these disorders are syndromic, such as the neuronal ciliopathy Joubert syndrome, in some cases patients will present with an isolated phenotype-most commonly non-syndromic retinitis pigmentosa (RP). Here, we report two novel variants in INPP5E identified in two patients with non-syndromic RP: patient 1 with compound heterozygous variants (c.1516C > T, p.(Q506*), and c.847G > A, p.(A283T)) and patient 2 with a homozygous variant (c.1073C > T, p.(P358L)). To determine whether these variants were causative for the phenotype in the patients, automated ciliary phenotyping of patient-derived dermal fibroblasts was performed for percent ciliation, cilium length, retrograde IFT trafficking, and INPP5E localization. In both patients, a decrease in ciliary length and loss of INPP5E localization in the primary cilia were seen. With these molecular findings, we can confirm functionally that the novel variants in INPP5E are causative for the RP phenotypes seen in both patients. Additionally, this study demonstrates the usefulness of utilizing ciliary phenotyping as an assistant in ciliopathy diagnosis and phenotyping.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA