Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 291(46): 24036-24040, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27645994

RESUMEN

The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4, and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine sulfoxide reductase B1), and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15-kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV), and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing, and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates.


Asunto(s)
Selenoproteínas/clasificación , Selenoproteínas/genética , Humanos , Terminología como Asunto
2.
RNA ; 20(7): 1046-56, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24850884

RESUMEN

SBP2 is a pivotal protein component in selenoprotein synthesis. It binds the SECIS stem-loop in the 3' UTR of selenoprotein mRNA and interacts with both the specialized translation elongation factor and the ribosome at the 60S subunit. In this work, our goal was to identify the binding partners of SBP2 on the ribosome. Cross-linking experiments with bifunctional reagents demonstrated that the SBP2-binding site on the human ribosome is mainly formed by the 28S rRNA. Direct hydroxyl radical probing of the entire 28S rRNA revealed that SBP2 bound to 80S ribosomes or 60S subunits protects helix ES7L-E in expansion segment 7 of the 28S rRNA. Diepoxybutane cross-linking confirmed the interaction of SBP2 with helix ES7L-E. Additionally, binding of SBP2 to the ribosome led to increased reactivity toward chemical probes of a few bases in ES7L-E and in the universally conserved helix H89, indicative of conformational changes in the 28S rRNA in response to SBP2 binding. This study revealed for the first time that SBP2 makes direct contacts with a discrete region of the human 28S rRNA.


Asunto(s)
ARN Ribosómico 28S/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Selenoproteínas/biosíntesis , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , ARN Ribosómico 28S/química , Proteínas de Unión al ARN/química , Ribosomas/química , Homología de Secuencia de Ácido Nucleico
3.
Nucleic Acids Res ; 42(13): 8663-77, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25013170

RESUMEN

Mammalian mRNAs are generated by complex and coordinated biogenesis pathways and acquire 5'-end m(7)G caps that play fundamental roles in processing and translation. Here we show that several selenoprotein mRNAs are not recognized efficiently by translation initiation factor eIF4E because they bear a hypermethylated cap. This cap modification is acquired via a 5'-end maturation pathway similar to that of the small nucle(ol)ar RNAs (sn- and snoRNAs). Our findings also establish that the trimethylguanosine synthase 1 (Tgs1) interacts with selenoprotein mRNAs for cap hypermethylation and that assembly chaperones and core proteins devoted to sn- and snoRNP maturation contribute to recruiting Tgs1 to selenoprotein mRNPs. We further demonstrate that the hypermethylated-capped selenoprotein mRNAs localize to the cytoplasm, are associated with polysomes and thus translated. Moreover, we found that the activity of Tgs1, but not of eIF4E, is required for the synthesis of the GPx1 selenoprotein in vivo.


Asunto(s)
Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Selenoproteínas/genética , Línea Celular , Factor 4E Eucariótico de Iniciación/metabolismo , Glutatión Peroxidasa/biosíntesis , Glutatión Peroxidasa/genética , Humanos , Metilación , Metiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , Polirribosomas/química , Biosíntesis de Proteínas , ARN Mensajero/análisis , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Proteínas del Complejo SMN/metabolismo , Selenoproteínas/biosíntesis , Selenoproteínas/metabolismo , Glutatión Peroxidasa GPX1
4.
RNA ; 19(8): 1147-58, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23788723

RESUMEN

The amino acid selenocysteine is encoded by UGA, usually a stop codon, thus requiring a specialized machinery to enable its incorporation into selenoproteins. The machinery comprises the tRNA(Sec), a 3'-UTR mRNA stem-loop termed SElenoCysteine Insertion Sequence (SECIS), which is mandatory for recoding UGA as a Sec codon, the SECIS Binding Protein 2 (SBP2), and other proteins. Little is known about the molecular mechanism and, in particular, when, where, and how the SECIS and SBP2 contact the ribosome. Previous work by others used the isolated SECIS RNA to address this question. Here, we developed a novel approach using instead engineered minimal selenoprotein mRNAs containing SECIS elements derivatized with photoreactive groups. By cross-linking experiments in rabbit reticulocyte lysate, new information could be gained about the SBP2 and SECIS contacts with components of the translation machinery at various translation steps. In particular, we found that SBP2 was bound only to the SECIS in 48S pre-initiation and 80S pretranslocation complexes. In the complex where the Sec-tRNA(Sec) was accommodated to the A site but transpeptidation was blocked, SBP2 bound the ribosome and possibly the SECIS element as well, and the SECIS had flexible contacts with the 60S ribosomal subunit involving several ribosomal proteins. Altogether, our findings led to broadening our understanding about the unique mechanism of selenocysteine incorporation in mammals.


Asunto(s)
Selenoproteínas/biosíntesis , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia Aminoácido-Específico/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Conejos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Reticulocitos/metabolismo , Ribosomas/metabolismo , Selenoproteínas/química , Selenoproteínas/genética
5.
Hum Mol Genet ; 20(4): 694-704, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21131290

RESUMEN

Selenoprotein N (SelN) deficiency causes a group of inherited neuromuscular disorders termed SEPN1-related myopathies (SEPN1-RM). Although the function of SelN remains unknown, recent data demonstrated that it is dispensable for mouse embryogenesis and suggested its involvement in the regulation of ryanodine receptors and/or cellular redox homeostasis. Here, we investigate the role of SelN in satellite cell (SC) function and muscle regeneration, using the Sepn1(-/-) mouse model. Following cardiotoxin-induced injury, SelN expression was strongly up-regulated in wild-type muscles and, for the first time, we detected its endogenous expression in a subset of mononucleated cells by immunohistochemistry. We show that SelN deficiency results in a reduced basal SC pool in adult skeletal muscles and in an imperfect muscle restoration following a single injury. A dramatic depletion of the SC pool was detected after the first round of degeneration and regeneration that totally prevented subsequent regeneration of Sepn1(-/-) muscles. We demonstrate that SelN deficiency affects SC dynamics on isolated single fibres and increases the proliferation of Sepn1(-/-) muscle precursors in vivo and in vitro. Most importantly, exhaustion of the SC population was specifically identified in muscle biopsies from patients with mutations in the SEPN1 gene. In conclusion, we describe for the first time a major physiological function of SelN in skeletal muscles, as a key regulator of SC function, which likely plays a central role in the pathophysiological mechanism leading to SEPN1-RM.


Asunto(s)
Músculo Esquelético/patología , Músculo Esquelético/fisiología , Regeneración , Células Satélite del Músculo Esquelético/patología , Selenoproteínas/deficiencia , Selenoproteínas/genética , Animales , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Proteínas Cardiotóxicas de Elápidos/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Músculo Esquelético/citología , Enfermedades Musculares/patología , Mutación
6.
Nucleic Acids Res ; 39(8): 3116-27, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21177654

RESUMEN

In the human genome, ∼ 10% of the genes are arranged head to head so that their transcription start sites reside within <1 kbp on opposite strands. In this configuration, a bidirectional promoter generally drives expression of the two genes. How bidirectional expression is performed from these particular promoters constitutes a puzzling question. Here, by a combination of in silico and biochemical approaches, we demonstrate that hStaf/ZNF143 is involved in controlling expression from a subset of divergent gene pairs. The binding sites for hStaf/ZNF143 (SBS) are overrepresented in bidirectional versus unidirectional promoters. Chromatin immunoprecipitation assays with a significant set of bidirectional promoters containing putative SBS revealed that 93% of them are associated with hStaf/ZNF143. Expression of dual reporter genes directed by bidirectional promoters are dependent on the SBS integrity and requires hStaf/ZNF143. Furthermore, in some cases, functional SBS are located in bidirectional promoters of gene pairs encoding a noncoding RNA and a protein gene. Remarkably, hStaf/ZNF143 per se exhibits an inherently bidirectional transcription activity, and together our data provide the demonstration that hStaf/ZNF143 is indeed a transcription factor controlling the expression of divergent protein-protein and protein-non-coding RNA gene pairs.


Asunto(s)
Regiones Promotoras Genéticas , Transactivadores/fisiología , Transcripción Genética , Sitios de Unión , ADN/química , Regulación hacia Abajo , Técnicas de Silenciamiento del Gen , Genoma Humano , Células HeLa , Humanos , Proteínas/genética , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Análisis de Secuencia de ADN , Transactivadores/genética , Transactivadores/metabolismo
7.
FEBS Open Bio ; 13(7): 1138-1139, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37394995

RESUMEN

The Federation of European Biochemical Societies (FEBS) awarded FEBS Long-Term Fellowships from 1979 until 2020, at which time the scheme was replaced with the FEBS Excellence Award. Over four decades, FEBS awarded a huge number of Long-Term Fellowships, helping to support and promote the careers of excellent young researchers across Europe. To celebrate the exciting work performed by the FEBS Long-Term Fellows, we present here a special 'In the Limelight' issue of FEBS Open Bio, containing four Mini-reviews and four Research Protocols authored by the fellows themselves. The four Review articles provide timely updates on the respective research fields, while the Research Protocols describe how to perform challenging experimental methods in detail. We hope this issue will be a valuable resource for the community, and a celebration of the high-quality work done by young scientists.


Asunto(s)
Becas , Investigadores , Humanos , Europa (Continente)
8.
Nucleic Acids Res ; 38(2): 370-81, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19906720

RESUMEN

The C/D box scaRNA2 is predicted to guide specific 2'-O-methylation of U2 snRNA. In contrast to other SCARNA genes, SCARNA2 appears to be independently transcribed. By transient expression of SCARNA2-reporter gene constructs, we have demonstrated that this gene is transcribed by RNA polymerase II and that the promoter elements responsible for its transcription are contained within a 161 bp region upstream of the transcription start site. In mammals, we have identified four cross species conserved promoter elements, a TATA motif, an hStaf/ZNF143 binding site and two novel elements that are required for full promoter activity. Binding of the human hStaf/ZNF143 transcription factor to its target sequence is required for promoter activity, suggesting that hStaf/ZNF143 is a fundamental regulator of the SCARNA2 gene. We also showed that RNA polymerase II continues transcription past the 3'-end of the mature RNA, irrespective of the identity of the Pol II promoter. The 3'-end processing and accumulation are governed by the sole information contained in the scaRNA2 encoding region, the maturation occurring via a particular pathway incompatible with that of mRNA or snRNA production.


Asunto(s)
ARN/genética , Transcripción Genética , Sitios de Unión , Células HeLa , Humanos , Regiones Promotoras Genéticas , ARN/biosíntesis , ARN/metabolismo , Procesamiento de Término de ARN 3' , ARN Polimerasa II/metabolismo , Transactivadores/metabolismo , ARN Pequeño no Traducido
9.
Nucleic Acids Res ; 37(7): 2126-41, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19223320

RESUMEN

Selenoproteins contain the amino acid selenocysteine which is encoded by a UGA Sec codon. Recoding UGA Sec requires a complex mechanism, comprising the cis-acting SECIS RNA hairpin in the 3'UTR of selenoprotein mRNAs, and trans-acting factors. Among these, the SECIS Binding Protein 2 (SBP2) is central to the mechanism. SBP2 has been so far functionally characterized only in rats and humans. In this work, we report the characterization of the Drosophila melanogaster SBP2 (dSBP2). Despite its shorter length, it retained the same selenoprotein synthesis-promoting capabilities as the mammalian counterpart. However, a major difference resides in the SECIS recognition pattern: while human SBP2 (hSBP2) binds the distinct form 1 and 2 SECIS RNAs with similar affinities, dSBP2 exhibits high affinity toward form 2 only. In addition, we report the identification of a K (lysine)-rich domain in all SBP2s, essential for SECIS and 60S ribosomal subunit binding, differing from the well-characterized L7Ae RNA-binding domain. Swapping only five amino acids between dSBP2 and hSBP2 in the K-rich domain conferred reversed SECIS-binding properties to the proteins, thus unveiling an important sequence for form 1 binding.


Asunto(s)
Regiones no Traducidas 3'/química , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Proteínas de Unión al ARN/química , Selenoproteínas/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/metabolismo , Datos de Secuencia Molecular , Mutación Puntual , Unión Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo
10.
Biochemistry ; 49(39): 8618-25, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20799725

RESUMEN

Elevated levels of reactive oxygen species can damage proteins. Sulfur-containing amino acid residues, cysteine and methionine, are particularly susceptible to such damage. Various enzymes evolved to protect proteins or repair oxidized residues, including methionine sulfoxide reductases MsrA and MsrB, which reduce methionine (S)-sulfoxide (Met-SO) and methionine (R)-sulfoxide (Met-RO) residues, respectively, back to methionine. Here, we show that MsrA and MsrB are involved in the regulation of mitochondrial function. Saccharomyces cerevisiae mutant cells lacking MsrA, MsrB, or both proteins had normal levels of mitochondria but lower levels of cytochrome c and fewer respiration-competent mitochondria. The growth of single MsrA or MsrB mutants on respiratory carbon sources was inhibited, and that of the double mutant was severely compromised, indicating impairment of mitochondrial function. Although MsrA and MsrB are thought to have similar roles in oxidative protein repair each targeting a diastereomer of methionine sulfoxide, their deletion resulted in different phenotypes. GFP fusions of MsrA and MsrB showed different localization patterns and primarily localized to cytoplasm and mitochondria, respectively. This finding agreed with compartment-specific enrichment of MsrA and MsrB activities. These results show that oxidative stress contributes to mitochondrial dysfunction through oxidation of methionine residues in proteins located in different cellular compartments.


Asunto(s)
Mitocondrias/enzimología , Oxidorreductasas/metabolismo , Saccharomyces cerevisiae/enzimología , Eliminación de Gen , Metionina/metabolismo , Metionina Sulfóxido Reductasas , Oxidación-Reducción , Estrés Oxidativo , Oxidorreductasas/análisis , Oxidorreductasas/genética , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae
11.
Biochim Biophys Acta ; 1790(11): 1415-23, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19285539

RESUMEN

The amino acid selenocysteine (Sec) is the major biological form of the trace element selenium. Sec is co-translationally incorporated in selenoproteins. There are 25 selenoprotein genes in humans, and Sec was found in the active site of those that have been attributed a function. This review will discuss how selenocysteine is synthesized and incorporated into selenoproteins in eukaryotes. Sec biosynthesis from serine on the tRNA(Sec) requires four enzymes. Incorporation of Sec in response to an in-frame UGA codon, otherwise signaling termination of translation, is achieved by a complex recoding machinery to inform the ribosomes not to stop at this position on the mRNA. A number of the molecular partners acting in this machinery have been identified but their detailed mechanism of action has not been deciphered yet. Here we provide an overview of the literature in the field. Particularly striking is the higher than originally envisaged number of factors necessary to synthesize Sec and selenoproteins. Clearly, selenoprotein synthesis is an exciting and very active field of research.


Asunto(s)
Eucariontes/metabolismo , Selenio/metabolismo , Selenoproteínas/metabolismo , Animales , Secuencia de Bases , Eucariontes/genética , Humanos , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Modelos Biológicos , Selenocisteína/biosíntesis , Selenoproteínas/biosíntesis , Selenoproteínas/genética
12.
Biochim Biophys Acta ; 1790(11): 1569-74, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19285112

RESUMEN

The crucial role of the trace element selenium in livestock and human health, in particular in striated muscle function, has been well established but the underlying molecular mechanisms remain poorly understood. Over the last decade, identification of the full repertoire of selenium-containing proteins has opened the way towards a better characterization of these processes. Two selenoproteins have mainly been investigated in muscle, namely SelW and SelN. Here we address their involvement in muscle development and maintenance, through the characterization of various cellular or animal models. In particular, mutations in the SEPN1 gene encoding selenoprotein N (SelN) cause a group of neuromuscular disorders now referred to as SEPN1-related myopathy. Recent findings on the functional consequences of these mutations suggest an important contribution of SelN to the regulation of oxidative stress and calcium homeostasis. Importantly, the conclusions of these experiments have opened new avenues of investigations that provide grounds for the development of therapeutic approaches.


Asunto(s)
Enfermedades Musculares/etiología , Selenoproteínas/fisiología , Animales , Calcio/metabolismo , Humanos , Líquido Intracelular/metabolismo , Modelos Biológicos , Proteínas Musculares/genética , Proteínas Musculares/fisiología , Músculos/fisiología , Enfermedades Musculares/genética , Mutación/fisiología , Selenoproteínas/genética
13.
RNA ; 14(7): 1270-5, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18511501

RESUMEN

Human accelerated region 1 (HAR1) is a short DNA region identified recently to have evolved the most rapidly among highly constrained regions since the divergence from our common ancestor with chimpanzee. It is transcribed as part of a noncoding RNA specifically expressed in the developing human neocortex. Employing a panoply of enzymatic and chemical probes, our analysis of HAR1 RNA proposed a secondary structure model differing from that published. Most surprisingly, we discovered that the substitutions between the chimpanzee and human sequences led the human HAR1 RNA to adopt a cloverleaf-like structure instead of an extended and unstable hairpin in the chimpanzee sequence. Thus, the rapid evolutionary changes resulted in a profound rearrangement of HAR1 RNA structure. Altogether, our results provide a structural context for elucidating HAR1 RNA function.


Asunto(s)
Encéfalo/metabolismo , Pan troglodytes/genética , ARN no Traducido/química , Animales , Secuencia de Bases , Evolución Molecular , Genoma Humano , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico
14.
Bioinformatics ; 25(5): 674-5, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19179357

RESUMEN

SUMMARY: Selenoproteins contain the 21st amino acid selenocysteine which is encoded by an inframe UGA codon, usually read as a stop. In eukaryotes, its co-translational recoding requires the presence of an RNA stem-loop structure, the SECIS element in the 3 untranslated region of (UTR) selenoprotein mRNAs. Despite little sequence conservation, SECIS elements share the same overall secondary structure. Until recently, the lack of a significantly high number of selenoprotein mRNA sequences hampered the identification of other potential sequence conservation. In this work, the web-based tool SECISaln provides for the first time an extensive structure-based sequence alignment of SECIS elements resulting from the well-defined secondary structure of the SECIS RNA and the increased size of the eukaryotic selenoproteome. We have used SECISaln to improve our knowledge of SECIS secondary structure and to discover novel, conserved nucleotide positions and we believe it will be a useful tool for the selenoprotein and RNA scientific communities. AVAILABILITY: SECISaln is freely available as a web-based tool at http://genome.crg.es/software/secisaln/.


Asunto(s)
Regiones no Traducidas 3'/química , Biología Computacional/métodos , Selenoproteínas/genética , Programas Informáticos , Secuencia de Bases , Codón de Terminación , Células Eucariotas/fisiología , Internet , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Estructura Secundaria de Proteína , ARN/química , Selenoproteínas/química
15.
FASEB J ; 23(1): 107-13, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18772345

RESUMEN

Translational read-through of the UGA stop codon is an evolutionarily conserved feature that most prominently represents the basis of selenoprotein biosynthesis. It requires a specific cis-acting stem loop control element, termed SECIS, which is located in the 3'-untranslated region of eukaryotic selenoprotein mRNAs. In a search for novel factors underlying the SECIS-directed UGA read-through process, we identified an evolutionary conserved GTPase-activating protein, termed GAPsec. We show that the activity of the Drosophila GAPsec (dGAPsec) is necessary to support SECIS-dependent UGA read-through activity in flies and the mouse homolog mGAPsec in mice tissue culture cells. However, selenoprotein biosynthesis is not impaired in flies that lack dGAPsec activity. The results indicate that GAPsec is part of a novel SECIS-dependent translational read-through system that does not involve selenocysteine incorporation.


Asunto(s)
Codón de Terminación/metabolismo , Drosophila/metabolismo , Regulación de la Expresión Génica/fisiología , Secuencias Invertidas Repetidas/fisiología , Selenocisteína/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Perfilación de la Expresión Génica , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Organismos Modificados Genéticamente , Técnicas del Sistema de Dos Híbridos
16.
BMC Dev Biol ; 9: 46, 2009 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-19698141

RESUMEN

BACKGROUND: In humans, mutations in the SEPN1 gene, encoding selenoprotein N (SelN), are involved in early onset recessive neuromuscular disorders, referred to as SEPN1-related-myopathies. The mechanisms behind these pathologies are poorly understood since the function of SelN remains elusive. However, previous results obtained in humans and more recently in zebrafish pointed to a potential role for SelN during embryogenesis. Using qRT-PCR, Western blot and whole mount in situ hybridization, we characterized in detail the spatio-temporal expression pattern of the murine Sepn1 gene during development, focusing particularly on skeletal muscles. RESULTS: In whole embryos, Sepn1 transcripts were detected as early as E5.5, with expression levels peaking at E12.5, and then strongly decreasing until birth. In isolated tissues, only mild transcriptional variations were observed during development, whereas a striking reduction of the protein expression was detected during the perinatal period. Furthermore, we demonstrated that Sepn1 is expressed early in somites and restricted to the myotome, the sub-ectodermal mesenchyme and the dorsal root ganglia at mid-gestation stages. Interestingly, Sepn1 deficiency did not alter somitogenesis in embryos, suggesting that SelN is dispensable for these processes in mouse. CONCLUSION: We characterized for the first time the expression pattern of Sepn1 during mammalian embryogenesis and we demonstrated that its differential expression is most likely dependent on major post-transcriptional regulations. Overall, our data strongly suggest a potential role for selenoprotein N from mid-gestation stages to the perinatal period. Interestingly, its specific expression pattern could be related to the current hypothesis that selenoprotein N may regulate the activity of the ryanodine receptors.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas Musculares/metabolismo , Músculo Esquelético/embriología , Selenoproteínas/metabolismo , Animales , Embrión de Mamíferos/metabolismo , Humanos , Ratones , Proteínas Musculares/genética , Mioblastos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Selenoproteínas/genética , Pez Cebra/embriología
17.
Nucleic Acids Res ; 35(10): 3453-64, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17478512

RESUMEN

BubR1 is a key protein mediating spindle checkpoint activation. Loss of this checkpoint control results in chromosomal instability and aneuploidy. The transcriptional regulation of the cell cycle regulated human BUB1B gene, which encodes BubR1, was investigated in this report. A minimal BUB1B gene promoter containing 464 bp upstream from the translation initiation codon was sufficient for cell cycle regulated promoter activity. A pivotal role for transcription factor hStaf/ZNF143 in the expression of the BUB1B gene was demonstrated through gel retardation assays, transient expression of mutant BUB1B promoter-reporter gene constructs and chromatin immunoprecipitation assay. Two phylogenetically conserved hStaf/ZNF143-binding sites (SBS) were identified which are indispensable for BUB1B promoter activity. In addition, we found that the domain covering the transcription start sites contains conserved boxes homologous to initiator (Inr), cell cycle dependent (CDE) and cell cycle genes homology regions (CHR) elements. Mutations within the CDE and CHR elements led to diminished cell cycle regulation of BUB1B transcription. These results demonstrate that BUB1B gene transcription is positively regulated by hStaf/ZNF143, a ubiquitously expressed factor, and that the CDE-CHR tandem element was essential for G2/M-specific transcription of the BUB1B gene.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regiones Promotoras Genéticas , Proteínas Quinasas/genética , Transactivadores/fisiología , Activación Transcripcional , Región de Flanqueo 5' , Animales , Secuencia de Bases , Sitios de Unión , Células COS , Ciclo Celular/genética , Línea Celular , Chlorocebus aethiops , Elementos Transponibles de ADN , Proteínas de Unión al ADN/metabolismo , Drosophila/citología , Drosophila/genética , Humanos , Datos de Secuencia Molecular , Mutación , Proteínas Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas , Transactivadores/metabolismo , Sitio de Iniciación de la Transcripción
18.
Methods Mol Biol ; 1661: 73-92, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28917038

RESUMEN

Chemical approaches are very powerful tools for investigating the molecular structure and architecture of large ribonucleoprotein complexes involving ribosomes and other components of the translation system. Application of RNA nucleotide-specific and cross-linking reagents of a broad specificity range allows the researcher to obtain information on the sites of ligand binding to the ribosome and to each other as well as on the RNA rearrangements caused by the binding. Here, we describe specific chemical approaches including chemical probing and site-directed or bifunctional reagent-mediated cross-linking, which have been used for exploring the mechanism of selenocysteine insertion into a polypeptide chain by mammalian ribosomes.


Asunto(s)
Ribosomas/metabolismo , Selenoproteínas/biosíntesis , Selenoproteínas/genética , Animales , Sistema Libre de Células , Humanos , Ligandos , Unión Proteica , Biosíntesis de Proteínas , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Ribosomas/química , Selenocisteína/química , Selenocisteína/genética
19.
Gene ; 401(1-2): 145-53, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17707600

RESUMEN

The mitochondrial transcription factor A (Tfam) is essential for transcription initiation and replication of mitochondrial DNA. It was previously reported that transcription factors Sp1, NRF-1, NRF-2 were critical for maintaining the normal transcription levels of the mammalian TFAM gene. In this work, investigation of the transcriptional regulation of the human TFAM gene revealed the presence of two cross-species conserved binding sites for the transcription factor hStaf/ZNF143. By using promoter binding assays, transient expression of mutant TFAM reporter gene constructs and chromatin immunoprecipitation experiments, we provided insight into the involvement of hStaf/ZNF143 in promoter activity. Furthermore, we reported the identification of two other functionally important elements. Altogether, our data led to the conclusion that the promoter of the human TFAM gene harbors a complex organization with at least six transcriptional regulatory elements.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas Mitocondriales/metabolismo , Transactivadores/fisiología , Factores de Transcripción/fisiología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Inmunoprecipitación de Cromatina , Análisis por Conglomerados , Proteínas de Unión al ADN/genética , Expresión Génica , Genes Reporteros , Humanos , Luciferasas/metabolismo , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Homología de Secuencia de Aminoácido , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección , beta-Galactosidasa/metabolismo
20.
Curr Protein Pept Sci ; 3(1): 143-51, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12370018

RESUMEN

The amino acid selenocysteine represents the major biological form of selenium. Both the synthesis of selenocysteine and its co-translational incorporation into selenoproteins in response to an in-frame UGA codon, require a complex molecular machinery. To decode the UGA Sec codon in eubacteria, this machinery comprises the tRNASec, the specialized elongation factor SelB and the SECIS hairpin in the selenoprotein mRNAs. SelB conveys the Sec-tRNASec to the A site of the ribosome through binding to the SECIS mRNA hairpin adjacent to the UGA Sec codon. SelB is thus a bifunctional factor, carrying functional homology to elongation factor EF-Tu in its N-terminal domain and SECIS RNA binding activity via its C-terminal extension. In archaea and eukaryotes, selenocysteine incorporation exhibits a higher degree of complexity because the SECIS hairpin is localized in the 3' untranslated region of the mRNA. In the last couple of years, remarkable progress has been made toward understanding the underlying mechanism in mammals. Indeed, the discovery of the SECIS RNA binding protein SBP2, which is not a translation factor, paved the way for the subsequent isolation of mSelB/EFSec, the mammalian homolog of SelB. In contrast to the eubacterial SelB, the specialized elongation factor mSelB/EFSec the SECIS RNA binding function. The role is carried out by SBP2 that also forms a protein-protein complex with mSelB/EFSec. As a consequence, an important difference between the eubacterial and eukaryal selenoprotein synthesis machineries is that the functions of SelB are divided into two proteins in eukaryotes. Obviously, selenoprotein synthesis represents a higher degree of complexity than anticipated, and more needs to be discovered in eukaryotes. In this review, we will focus on the structural and functional aspects of the SelB and SBP2 factors in selenoprotein synthesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Factores de Elongación de Péptidos/metabolismo , Biosíntesis de Proteínas , Proteínas , Proteínas de Unión al ARN/metabolismo , Proteínas Bacterianas/genética , Guanosina Trifosfato/metabolismo , Modelos Biológicos , Unión Proteica , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Selenoproteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA