Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anim Biotechnol ; 35(1): 2322542, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38426941

RESUMEN

Milk urea (MU) concentration is proposed as an indicator trait for breeding toward reduced nitrogen (N) emissions and leaching in dairy. We selected 20 German Holstein cows based on MU breeding values, with 10 cows each having low (LMUg) and high (HMUg) MU genetic predisposition. Using RNA-seq, we characterized these cows to unravel molecular pathways governing post-absorptive body N pools focusing on renal filtration and reabsorption of nitrogenous compounds, hepatic urea formation and mammary gland N excretion. While we observed minor adjustments in cellular energy metabolism in different tissues associated with different MU levels, no transcriptional differences in liver ammonia detoxification were detected, despite significant differences in MU between the groups. Differential expression of AQP3 and SLC38A2 in the kidney provides evidence for higher urea concentration in the collecting duct of LMU cows than HMU cows. The mammary gland exhibited the most significant differences, particularly in tricarboxylic acid (TCA) cycle genes, amino acid transport, tRNA binding, and casein synthesis. These findings suggest that selecting for lower MU could lead to altered urinary urea (UU) handling and changes in milk protein synthesis. However, given the genetic variability in N metabolism components, the long-term effectiveness of MU-based selection in reducing N emissions remains uncertain.


Asunto(s)
Lactancia , Leche , Femenino , Bovinos/genética , Animales , Leche/química , Proteínas de la Leche , Urea/análisis , Urea/metabolismo , RNA-Seq , Nitrógeno/metabolismo , Dieta/veterinaria
2.
J Dairy Sci ; 107(5): 3292-3305, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38056565

RESUMEN

Heat stress causes barrier dysfunction and inflammation of the small intestine of several species. However, less is known about the molecular and cellular mechanisms underlying the response of the bovine large intestine to hyperthermia. We aimed to identify changes in the colon of dairy cows in response to constant heat stress using a proteomic approach. Eighteen lactating Holstein dairy cows were kept under constant thermoneutral conditions (16°C and 68% relative humidity [RH]; temperature-humidity index [THI] = 60) for 6 d (period 1) with free access to feed and water. Thereafter, 6 cows were equally allocated to (1) thermoneutral condition with ad libitum feeding (TNAL; 16°C, RH = 68%, THI = 60), (2) heat stress condition (HS; 28°C, RH = 50%, THI = 76) with ad libitum feeding, or (3) pair-feeding at thermoneutrality (TNPF; 16°C, RH = 68%, THI = 60) for another 7 d (period 2). Rectal temperature, milk yield, dry matter and water intake were monitored daily. Then, cows were slaughtered and colon mucosa samples were taken for proteomic analysis. Physiological data were analyzed by ANOVA and colon proteome data were processed using DESeq2 package in R. Rectal temperature was significantly higher in HS than in TNPF and TNAL cows in period 2. Proteomic analysis revealed an enrichment of activated pathways related to colonic barrier function and inflammation, heat shock proteins, AA metabolism, reduced overall protein synthesis rate, and post-transcriptional regulation induced by heat stress. Further regulations were found for enzymes of the tricarboxylic acid cycle and components of the mitochondrial electron transport chain, presumably to reduce the generation of reactive oxygen species, maintain cellular ATP levels, and prevent apoptosis in the colon of HS cows. These results highlight the cellular, extracellular, and mitochondrial adaptations of the colon during heat stress and suggest a dysfunction of the hindgut barrier integrity potentially resulting in a "leaky" colon.

3.
J Dairy Sci ; 107(7): 5162-5177, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38431250

RESUMEN

The intestinal microbiota plays a pivotal role in digestive processes and maintains gut health and intestinal homeostasis. These functions may be compromised by increased environmental heat, which in turn reduces feed intake and gut integrity and activates the intestinal immune system. It remains unknown whether high ambient temperatures, which cause heat stress (HS) in dairy cows, disturb the eubiosis of the microbial community, and if so, to which extent the reduction in feed intake and the impairment of circulating and intestinal metabolites account for the alterations of the jejunal microbiota. To address these questions, jejunal digesta, mucosa, and plasma samples were collected from cows exposed to heat stress (HS; 28°C, temperature-humidity index [THI] = 76, n = 10), control conditions (CON; 16°C, THI = 60, n = 10), or pair-fed (PF; 16°C, THI = 60, n = 10) for 7 d. Digesta fluids were examined for pH, acetate, nonesterified fatty acids (NEFA), glucose, and lactate, and plasma samples were analyzed for glucose, lactate, BHB, triglycerides, NEFA, creatinine, and urea. The microbiota of the digesta and mucosa samples were analyzed by 16S rRNA sequencing. The α-diversity was higher in mucosa than digesta but was not affected by high ambient temperatures. However, the mucosa-associated microbiota appeared more responsive to ambient heat than the digesta microbiome. The adaptive responses under HS conditions comprised an increased mucosal abundance of Bifidobacteriaceae, Succinivibrionaceae UCG-001, Clostridia and Lactobacillus. In the digesta, HS has exerted effects on microbial abundance of Colidextribacter, and Lachnospiraceae UCG-008. Several correlations between plasma or intestinal metabolites and microbiota were elucidated, including Methanobacteriaceae correlating positively with plasma BHB and digesta glucose concentrations. Moreover, the reduction in feed intake during HS had non-negligible effects on microbial diversity and the abundance of certain taxa, underpinning the importance of nutrient supply on maintaining intestinal homeostasis.


Asunto(s)
Microbioma Gastrointestinal , Yeyuno , Animales , Bovinos , Femenino , Yeyuno/metabolismo , Yeyuno/microbiología , Calor , Microbiota
4.
J Environ Manage ; 356: 120588, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518497

RESUMEN

In the agricultural sector, ruminants are the largest methane (CH4) emission source and many efforts have been undertaken to reduce these greenhouse gas emissions, while compromising animal health and physiology. On the other hand, ruminal CH4, which is biomethane, is in high demand, especially in its liquid form (LBM) that can be used as high energy density fuel. However, CH4 released from a ruminant is immediately mixed with air and highly diluted (<0.1%), challenging CH4 capture technologies. Here we aimed to construct a cryogenic pilot system to capture and liquefy enteric CH4 released from dairy cows kept in respiration chambers. To approach this aim, the outlet air from the chambers was directed through a two-step cooling trap to capture CO2 (-120 to -130 °C) as a solid in the first and CH4 and O2 as liquids in the second cooler (-160 to -180 °C). Warming the second cooler resulted in the evaporation of O2, thereby separating O2 and CH4. LBM purity was in average 90% and was lowest at warming rates higher than 0.88 °C/min. The mean CH4 capture efficiency was 92% and found to be independent of sequestration time and flow rate. However, an increase in CH4 concentration to 0.6%, as it occurs directly at the muzzle of a cow, reduced the sequestration time for CH4. These results show that cryogenic technology can be used to obtain LBM from the air containing ultra-low CH4 concentrations as it is found in cattle barns with high efficiency and purity.


Asunto(s)
Metano , Leche , Femenino , Bovinos , Animales , Leche/química , Proyectos Piloto , Metano/análisis , Rumiantes , Agricultura , Dieta/veterinaria , Lactancia
5.
BMC Genomics ; 24(1): 485, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626314

RESUMEN

BACKGROUND: Nutrition has not only an impact on the general wellbeing of an animal but can also affect reproductive processes. In cattle, feeding regimes can influence the age of puberty onset and alter gonadal development. We analyzed effects of different milk replacer (MR) feeding regimes during rearing on ovarian physiology with specific emphasis on the numbers as well as gene expression characteristics of granulosa cells (GCs) at the age of puberty onset. Two groups of calves received either 10% or 20% of bodyweight MR per day during their first 8 weeks. After weaning, both groups were fed the same mixed ration ad libitum until slaughter at 8 months. RESULTS: Animals of the 20% feeding group had a significantly higher body weight, but the proportion of animals having a corpus luteum at the time of slaughter was not different between groups, suggesting a similar onset of puberty. Calves of the 10% group showed a constant GC count regardless of the number of follicles (r = 0.23) whereas in the 20% group increasing numbers of GCs were detected with a higher follicle count (r = 0.71). As a first effort to find a possible molecular explanation for this unexpected limitation of GC numbers in the 10% group, we comparatively analyzed GC transcriptomes in both diet groups. The mRNA microarray analysis revealed a total of 557 differentially expressed genes comparing both groups (fold change > |1.5| and p < 0.05). OAS1X, MX2 and OAS1Z were among the top downregulated genes in the 20% vs. the 10% group, whereas top upregulated genes comprised BOLA and XCL1. All of these genes are known to be regulated by interferon. Subsequent signaling pathway analysis revealed the involvement of several immune response mechanisms in accordance with a number of interferons as upstream regulators. CONCLUSIONS: The results indicate that the plane of MR feeding in early life has an impact on the number and physiology of GCs later in life. This might influence the overall reproductive life initiated by the onset of puberty in cattle. In addition, the observed alterations in GCs of calves fed less MR might be a consequence of interferon regulated immunological pathways.


Asunto(s)
Leche , Maduración Sexual , Femenino , Animales , Bovinos , Células de la Granulosa , Folículo Ovárico , Interferones
6.
J Dairy Sci ; 106(4): 3008-3022, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36894431

RESUMEN

Heat stress negatively affects the metabolism and physiology of the bovine gut. However, it is not known whether heat stress induces an inflammatory response in mesenteric lymph nodes (MLN), the primary origin of gut immune cells, and thus contributes to inflammatory processes in the circulation. Therefore, our objective was to elucidate the effects of chronic heat stress on the systemic activation of acute-phase response in blood, proinflammatory cytokine production in peripheral blood mononuclear cells (PBMC), and the activation of the toll-like receptor signaling (TLR) 2/4 pathway in MLN leucocytes and their chemokines and chemokine receptor profiles in Holstein cows. Primiparous Holstein cows (n = 30; 169 ± 9 d in milk) were exposed to a temperature-humidity index (THI) of 60 [16°C, 63% relative humidity (RH)] for 6 d. Thereafter, cows were evenly assigned to 3 groups: heat-stressed (HS; 28°C, 50% RH, THI = 76), control (CON; 16°C, 69% RH, THI = 60), or pair-feeding (PF; 16°C, 69% RH, THI = 60) for 7 d. On d 6, PBMC were isolated and on d 7 MLN. Plasma haptoglobin, TNFα, and IFNγ concentrations increased more in HS than CON cows. Concomitantly, TNFA mRNA abundance was higher in PBMC and MLN leucocytes of HS than PF cows, whereas IFNG mRNA abundance tended to be higher in MLN leucocytes of HS than PF cows, but not for chemokines (CCL20, CCL25) or chemokine receptors (ITGB7, CCR6, CCR7, CCR9). Furthermore, the TLR2 protein expression tended to be more abundant in MLN leucocytes of HS than PF cows. These results suggest that heat stress induced an adaptive immune response in blood, PBMC, and MLN leukocytes involving the acute-phase protein haptoglobin, proinflammatory cytokine production, and TLR2 signaling in MLN leucocytes. However, chemokines regulating the leucocyte trafficking between MLN and gut seem not to be involved in the adaptive immune response to heat stress.


Asunto(s)
Lactancia , Leucocitos Mononucleares , Femenino , Bovinos , Animales , Lactancia/fisiología , Haptoglobinas/metabolismo , Receptor Toll-Like 2/metabolismo , Leche/metabolismo , Respuesta al Choque Térmico , Leucocitos , Inmunidad Adaptativa , Ganglios Linfáticos , Calor
7.
J Dairy Sci ; 106(7): 4682-4697, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37173253

RESUMEN

Increasing the nitrogen-utilization efficiency (NUE) of dairy cows by breeding selection would offer advantages from nutritional, environmental, and economic perspectives. Because data collection of NUE phenotypes is not feasible in large cow cohorts, the cow individual milk urea concentration (MU) has been suggested as an indicator trait. Considering the symbiotic interplay between dairy cows and their rumen microbiome, individual MU was thought to be influenced by host genetics and by the rumen microbiome, the latter in turn being partly attributed to host genetics. To enhance our knowledge of MU as an indicator trait for NUE, we aimed to identify differential abundant rumen microbial genera between Holstein cows with divergent genomic breeding values for MU (GBVMU; GBVHMU vs. GBVLMU, where H and L indicate high and low MU phenotypes, respectively). The microbial genera identified were further investigated for their correlations with MU and 7 additional NUE-associated traits in urine, milk, and feces in 358 lactating Holsteins. Statistical analysis of microbial 16S rRNA amplicon sequencing data revealed significantly higher abundances of the ureolytic genus Succinivibrionaceae UCG-002 in GBVLMU cows, whereas GBVHMU animals hosted higher abundances of Clostridia unclassified and Desulfovibrio. The entire discriminating ruminal signature of 24 microbial taxa included a further 3 genera of the Lachnospiraceae family that revealed significant correlations to MU values and were therefore proposed as considerable players in the GBVMU-microbiome-MU axis. The significant correlations of Prevotellaceae UCG-003, Anaerovibrio, Blautia, and Butyrivibrio abundances with MU measurements, milk nitrogen, and N content in feces suggested their contribution to genetically determined N-utilization in Holstein cows. The microbial genera identified might be considered for future breeding programs to enhance NUE in dairy herds.


Asunto(s)
Lactancia , Leche , Femenino , Bovinos , Animales , Leche/química , Lactancia/genética , Urea/análisis , ARN Ribosómico 16S/genética , Dieta/veterinaria , Nitrógeno/análisis , Genómica , Rumen/química , Alimentación Animal/análisis
8.
Proc Natl Acad Sci U S A ; 116(21): 10333-10338, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31064871

RESUMEN

High ambient temperature has multiple potential effects on the organism such as hyperthermia, endotoxemia, and/or systemic inflammation. However, it is often difficult to discriminate between cause and consequence of phenotypic effects, such as the indirect influence of heat stress via reduced food intake. Lactating dairy cows are a particularly sensitive model to examine the effects of heat stress due to their intensive metabolic heat production and small surface:volume ratio. Results from this model show heat stress directly induced a so-far unknown infiltration of yet uncategorized cells into the mucosa and submucosa of the jejunum. Due to a pair-feeding design, we can exclude this effect being a consequence of the concurrent heat-induced reduction in feed intake. Isolation and characterization of the infiltrating cells using laser capture microdissection and RNA sequencing indicated a myeloic origin and macrophage-like phenotype. Furthermore, targeted transcriptome analyses provided evidence of activated immune- and phagocytosis-related pathways with LPS and cytokines as upstream regulators directly associated with heat stress. Finally, we obtained indication that heat stress may directly alter jejunal tight junction proteins suggesting an impaired intestinal barrier. The penetration of toxic and bacterial compounds during heat stress may have triggered a modulated immune repertoire and induced an antioxidative defense mechanism to maintain homeostasis between commensal bacteria and the jejunal immune system. Our bovine model indicates direct effects of heat stress on the jejunum of mammals already at moderately elevated ambient temperature. These results need to be considered when developing concepts to combat the negative consequences of heat stress.


Asunto(s)
Respuesta al Choque Térmico/inmunología , Respuesta al Choque Térmico/fisiología , Yeyuno/inmunología , Yeyuno/fisiología , Animales , Bovinos , Femenino , Trastornos de Estrés por Calor/inmunología , Trastornos de Estrés por Calor/fisiopatología , Calor , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/fisiopatología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiología , Yeyuno/metabolismo , Lactancia/inmunología , Lactancia/metabolismo , Lactancia/fisiología , Proteínas de Uniones Estrechas/inmunología , Proteínas de Uniones Estrechas/metabolismo
9.
J Dairy Sci ; 105(6): 5124-5140, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35346462

RESUMEN

Direct measurements of methane (CH4) from individual animals are difficult and expensive. Predictions based on proxies for CH4 are a viable alternative. Most prediction models are based on multiple linear regressions (MLR) and predictor variables that are not routinely available in commercial farms, such as dry matter intake (DMI) and diet composition. The use of machine learning (ML) algorithms to predict CH4 emissions from across-country heterogeneous data sets has not been reported. The objectives were to compare performances of ML ensemble algorithm random forest (RF) and MLR models in predicting CH4 emissions from proxies in dairy cows, and assess effects of imputing missing data points on prediction accuracy. Data on CH4 emissions and proxies for CH4 from 20 herds were provided by 10 countries. The integrated data set contained 43,519 records from 3,483 cows, with 18.7% missing data points imputed using k-nearest neighbor imputation. Three data sets were created, 3k (no missing records), 21k (missing DMI imputed from milk, fat, protein, body weight), and 41k (missing DMI, milk fat, and protein records imputed). These data sets were used to test scenarios (with or without DMI, imputed vs. nonimputed DMI, milk fat, and protein), and prediction models (RF vs. MLR). Model predictive ability was evaluated within and between herds through 10-fold cross-validation. Prediction accuracy was measured as correlation between observed and predicted CH4, root mean squared error (RMSE) and mean normalized discounted cumulative gain (NDCG). Inclusion of DMI in the model improved within and between-herd prediction accuracy to 0.77 (RMSE = 23.3%) and 0.58 (RMSE = 31.9%) in RF and to 0.50 (RMSE = 0.327) and 0.13 (RMSE = 42.71) in MLR, respectively than when DMI was not included in the predictive model. When missing DMI records were imputed, within and between-herd accuracy increased to 0.84 (RMSE = 18.5%) and 0.63 (RMSE = 29.9%), respectively. In all scenarios, RF models out-performed MLR models. Results suggest routinely measured variables from dairy farms can be used in developing globally robust prediction models for CH4 if coupled with state-of-the-art techniques for imputation and advanced ML algorithms for predictive modeling.


Asunto(s)
Lactancia , Metano , Animales , Bovinos , Dieta/veterinaria , Femenino , Intestino Delgado/metabolismo , Metano/metabolismo , Leche/química
10.
J Dairy Sci ; 104(9): 10399-10414, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34127265

RESUMEN

Intensified milk replacer (MR) feeding in calves has nutritional long-term effects and is suggested to increase milk production later in life. However, the underlying mechanisms are not completely understood. The aim of our study was to investigate whether MR feeding intensity has long-term effects on energy metabolism and energy use efficiency of dairy calves. Newborn female Holstein calves (n = 28) were randomly assigned to 2 liquid feeding groups offered daily either 10% of body weight (BW) colostrum followed by 10% of BW MR (10%-MR) or 12% of BW colostrum followed by 20% of BW MR (20%-MR). Calves were housed individually. Weaning was completed by the end of wk 12. Hay and calf starter were fed from d 1 until the end of wk 14 and 16, respectively. A total mixed ration was fed from wk 11 onward, and the metabolizable energy intake (MEI) was determined daily. Energy metabolism of calves was measured in respiratory chambers before weaning in wk 6 and 9, and after weaning in wk 14 and 22. The MEI/BW0.75 was higher before weaning but lower during and shortly after weaning in 20%-MR calves. During the preweaning period, the 20%-MR animals had higher average daily gain, BW, back fat thickness and muscle diameter, but lower plasma ß-hydroxybutyrate concentrations. The group difference in average daily gain ceased in wk 9, differences in back fat thickness and muscle diameter ceased after weaning, whereas difference in BW0.75 persisted until wk 23. The energy conversion ratio (BW gain/MEI) was not different before weaning, but was lower during and after weaning in 20%-MR calves. The higher MEI and BW0.75 in 20%-MR calves resulted in higher heat production (HP), as well as in higher carbohydrate oxidation (COX) and fat oxidation during the preweaning period. Gas exchange variables normalized to BW0.75 or MEI differed between groups only during preweaning. The energy balance was lower in 10%-MR calves in wk 6 and 9. The HP/BW0.75 and COX/BW0.75 were higher, whereas HP/MEI was lower in 20%-MR calves in wk 6. When normalized to BW0.75 and MEI, HP in wk 6 and 9, and COX in wk 9 was lower in 20%-MR calves. In conclusion, 20%-MR calves showed greater efficiency estimates preweaning, but this effect did not occur after weaning, suggesting that energy use efficiency does not persist until later stages in life.


Asunto(s)
Alimentación Animal , Sustitutos de la Leche , Alimentación Animal/análisis , Animales , Peso Corporal , Bovinos , Dieta/veterinaria , Metabolismo Energético , Femenino , Leche , Destete
11.
J Sci Food Agric ; 101(8): 3394-3403, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33222175

RESUMEN

BACKGROUND: A robust proxy for estimating methane (CH4 ) emissions of individual dairy cows would be valuable especially for selective breeding. This study aimed to improve the robustness and accuracy of prediction models that estimate daily CH4 emissions from milk Fourier transform mid-infrared (FT-MIR) spectra by (i) increasing the reference dataset and (ii) adjusting for routinely recorded phenotypic information. Prediction equations for CH4 were developed using a combined dataset including daily CH4 measurements (n = 1089; g d-1 ) collected using the SF6 tracer technique (n = 513) and measurements using respiration chambers (RC, n = 576). Furthermore, in addition to the milk FT-MIR spectra, the variables of milk yield (MY) on the test day, parity (P) and breed (B) of cows were included in the regression analysis as explanatory variables. RESULTS: Models developed based on a combined RC and SF6 dataset predicted the expected pattern in CH4 values (in g d-1 ) during a lactation cycle, namely an increase during the first weeks after calving followed by a gradual decrease until the end of lactation. The model including MY, P and B information provided the best prediction results (cross-validation statistics: R2 = 0.68 and standard error = 57 g CH4 d-1 ). CONCLUSIONS: The models developed accounted for more of the observed variability in CH4 emissions than previously developed models and thus were considered more robust. This approach is suitable for large-scale studies (e.g. animal genetic evaluation) where robustness is paramount for accurate predictions across a range of animal conditions. © 2020 Society of Chemical Industry.


Asunto(s)
Bovinos/metabolismo , Metano/análisis , Leche/química , Espectrofotometría Infrarroja/métodos , Animales , Femenino , Lactancia , Metano/metabolismo , Leche/metabolismo , Embarazo
12.
J Nutr ; 150(4): 722-729, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31773161

RESUMEN

BACKGROUND: Cys is limiting for reduced glutathione (GSH) synthesis and can be synthesized from Met. We hypothesized that the dietary Met hydroxyl analogue dl-2-hydroxy-4-methylthiobutyric acid (dl-HMTBA) affects Cys and GSH metabolism and oxidative stress defense differently than Met. OBJECTIVE: The objective was to elucidate whether dl-HMTBA supplementation of a Met-deficient diet affects Cys flux, GSH fractional synthetic rate (FSR), and the basal oxidative stress level relative to Met supplementation in pigs. METHODS: Twenty-nine male German Landrace piglets aged 28 d were allocated to 3 dietary groups: a basal diet limiting in Met (69% of Met plus Cys requirement) supplemented with either 0.15% l-Met (LMET; n = 9), 0.15% dl-Met (DLMET; n = 11), or 0.17% dl-HMTBA (DLHMTBA; n = 9) on an equimolar basis. At age 54 d the pigs received a continuous infusion of [1-13C]-Cys to calculate Cys flux and Cys oxidation. After 3 d, GSH FSR was determined by [2,2-2H2]-glycine infusion, and RBC GSH and oxidized GSH concentrations were measured. At age 62 d the animals were killed to determine hepatic mRNA abundances of enzymes involved in GSH metabolism, GSH concentrations, and plasma oxidative stress defense markers. RESULTS: The Cys oxidation was 21-39% and Cys flux 5-15% higher in the fed relative to the feed-deprived state (P < 0.001). On average, GSH FSR was 49% lower (P < 0.01), and RBC GSH and total GSH concentrations were 12% and 9% lower, respectively, in DLHMTBA and DLMET relative to LMET pigs (P < 0.05). In the feed-deprived state, Gly flux, the GSH:oxidized glutathione (GSSG) ratio, RBC GSSG concentrations, plasma oxidative stress markers, and the hepatic GSH content did not differ between groups. CONCLUSIONS: Although GSH FSR was higher in LMET compared with DLMET or DLHMTBA feed-deprived pigs, these differences were not reflected by lower oxidative stress markers and antioxidant defense enzymes in LMET pigs.


Asunto(s)
Aminoácidos Sulfúricos/administración & dosificación , Dieta/veterinaria , Glutatión/biosíntesis , Metionina/análogos & derivados , Sus scrofa/metabolismo , Aminoácidos/sangre , Animales , Antioxidantes/análisis , Biomarcadores/sangre , Cisteína/sangre , Suplementos Dietéticos , Eritrocitos/química , Glutatión/análisis , Glutatión/sangre , Glicina/sangre , Hígado/química , Masculino , Metionina/administración & dosificación , Estrés Oxidativo/fisiología , Destete
13.
Neuroendocrinology ; 110(3-4): 246-257, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31141804

RESUMEN

The endocannabinoids (ECs) N-arachidonylethanolamide (anandamide; AEA) and 2-arachidonoylglycerol (2-AG) participate in the control of feed intake and energy metabolism. Most mammals increase their feed intake after parturition to cope with the increased energy and nutrient requirements for milk synthesis, thereby increasing their metabolic rate. Here we investigated in experiment 1 the regulation of plasma AEA and 2-AG concentrations during the transition from late pregnancy to early lactation in dairy cows, and analyzed in experiment 2 the expression of the EC system in the paraventricular nucleus (PVN) and the arcuate nucleus (ARC) of the hypothalamus of late and early lactating cows using immunohistochemistry. Cows in experiment 1 were retrospectively grouped based on peak plasma fatty acid concentrations to a high (H) or low (L) group. Feed intake was not different between groups before parturition, but was lower in H than L cows during early lactation. Plasma AEA and 2-AG concentrations increased 2.2- to 2.4-fold during early lactation, in which time plasma AEA concentrations rose faster in H cows than in L cows postpartum. Upregulation of N-acyl phosphatidylethanolamine-specific phospholipase D together with tending increased cannabinoid receptor 1 (CB1) expression, and downregulation of fatty acid amide hydrolase in early lactating cows suggested an increased PVN AEA tone. The abundance of CB1 in the ARC and diacylglycerol lipase-alpha was not different between late and early lactating cows, but PVN monoacylglycerol lipase expression was 30% higher in early lactating cows, indicating diminished PVN 2-AG concentrations. The results show a potential involvement of AEA in stimulating feed intake and of 2-AG in regulating energy metabolism of early lactating cows.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Ingestión de Alimentos , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Lactancia/sangre , Núcleo Hipotalámico Paraventricular/metabolismo , Parto/sangre , Alcamidas Poliinsaturadas/metabolismo , Animales , Ácidos Araquidónicos/sangre , Bovinos , Endocannabinoides/sangre , Femenino , Glicéridos/sangre , Alcamidas Poliinsaturadas/sangre , Embarazo , Receptor Cannabinoide CB1/metabolismo
14.
J Dairy Sci ; 103(9): 8601-8614, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32600758

RESUMEN

Global warming and accompanying high ambient temperatures reduce feed intake of dairy cows and shift the blood flow from the core of the body to the periphery. As a result, hypoxia may occur in the digestive tract accompanied by disruption of the intestinal barrier, local endotoxemia and inflammation, and altered nutrient absorption. However, whether the barrier of the rumen, like the intestine, is affected by ambient heat has not been studied so far. Lactating Holstein dairy cows were subjected to heat stress at 28°C (temperature-humidity index = 76; n = 5) with ad libitum feed intake or to thermoneutral conditions at 15°C (temperature-humidity index = 60; n = 5) and pair-feeding to heat-stressed animals for a total of 4 d. Gas exchange and feed intake behavior were measured in a respiration chamber, and rumen epithelia were taken after slaughter. Heat stress significantly reduced meal size and whole-body fat oxidation but increased meal frequency and carbohydrate oxidation. The mRNA expression of toll-like receptor 4 (TLR4) and tight junction proteins and the phosphorylation of TLR4 downstream targets (interleukin-1 receptor-associated kinase 4, stress-activated protein kinase, p38 mitogen-activated protein kinase, and nuclear factor k-B) in the rumen epithelium were not affected by heat. The proteomics approach revealed increased expression of rumen epithelium proteins involved in the AMP-activated protein kinase (AMPK) and insulin signaling pathways in heat-stressed cows. Also, proteins involved in chaperone-mediated folding of proteins were upregulated, whereas those involved in antioxidant defense system were downregulated. Further, we found evidence for increased carbohydrate phosphorylation accompanied with an increased flux of carbohydrates through the hexosamine biosynthetic pathway, providing substrates for protein glycosylation. In conclusion, the mild heat stress did not induce barrier dysfunction or inflammatory responses in the rumen epithelium of dairy cows, probably because of adaptations in feed intake behavior and defense mechanisms at the tissue level.


Asunto(s)
Adaptación Fisiológica , Bovinos , Respuesta al Choque Térmico/fisiología , Calor , Lactancia/fisiología , Rumen/fisiología , Alimentación Animal , Animales , Dieta/veterinaria , Femenino , Regulación de la Expresión Génica , Humedad , Estado Nutricional , Oxidación-Reducción , ARN Mensajero/genética , ARN Mensajero/metabolismo
15.
J Dairy Sci ; 103(7): 6054-6069, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32418697

RESUMEN

A growing need exists for the development of practical feeding strategies to mitigate methane (CH4) emissions from cattle. Therefore, the objective of this study was to evaluate the influence of milk replacer feeding intensity (MFI) in calves on CH4 emission, rumen development, and performance. Twenty-eight female newborn Holstein calves were randomly assigned to 2 feeding groups, offered daily either 10% of the body weight (BW) in colostrum and subsequently 10% of the BW in milk replacer (MR; 10%-MR), or 12% of the BW in colostrum followed by 20% of the BW in MR (20%-MR). In wk 3, half of each feeding group was equipped with a permanent rumen cannula. Both groups were weaned at the end of wk 12. Hay and calf starter (mixture of pelleted grains) were offered from d 1 until wk 14 and 16, respectively. A total mixed ration was offered from wk 11 onward. Feed intake was measured daily and BW, anatomical measures, and rumen size weekly. Methane production and gastrointestinal passage rate were measured pre-weaning in wk 6 and 9 and post-weaning in wk 14 and 22, with additional estimation of organic matter digestibility. Rumen fluid, collected in wk 1, 2, 3, 6, 9, 14, 18, and 22, was analyzed for volatile fatty acid concentrations. Although the experimental period ended in wk 23, rumen volume of 17 calves was determined after slaughter in wk 34. Data was analyzed using ANOVA for the effects of feeding group, cannulation, and time, if applicable. Dry matter intake (DMI) of solid feed (SF) in 20%-MR animals was lower pre-weaning in wk 6 to 10 but mostly higher post-weaning. From wk 6 onward, anatomical measures and BW were greater in 20%-MR animals, and only the differences in body condition score gradually ceased post-weaning. Following the amount of SF intake, 10%-MR calves emitted more CH4 pre-weaning in wk 9, whereas post-weaning the 20%-MR group tended to have higher levels. Methane emission intensity (CH4/BW) was lower pre-weaning in 20%-MR animals but was comparable to the 10%-MR group post-weaning. Methane yield (CH4/DMI of SF) and estimated post-weaning organic matter digestibility were not affected by MFI. Rumen size normalized to heart girth was greater in 10%-MR calves from wk 5 to 10, but differences did not persist thereafter. In wk 34, rumen volume was higher in 20%-MR calves, but normalization to BW revealed no difference between feeding groups. In conclusion, high MFI reduces CH4 emission from calves pre-weaning, although this effect ceases post-weaning.


Asunto(s)
Alimentación Animal/análisis , Bovinos/crecimiento & desarrollo , Dieta/veterinaria , Metano/biosíntesis , Sustitutos de la Leche/farmacología , Rumen/efectos de los fármacos , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Líquidos Corporales , Peso Corporal , Ácidos Grasos Volátiles , Femenino , Sustitutos de la Leche/metabolismo , Embarazo , Rumen/crecimiento & desarrollo
16.
J Nutr ; 149(3): 432-440, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30770540

RESUMEN

BACKGROUND: DL-2-hydroxy-4-methylthiobutyric acid (DL-HMTBA), an L-methionine (L-Met) hydroxyl analogue, has been suggested to be a dietary L-Met source. How dietary DL-HMTBA compared with L-Met affects whole-body L-Met kinetics in growing individuals is unknown. OBJECTIVES: We determined to what extent DL-HMTBA supplementation of an L-Met-deficient diet affects whole-body L-Met and L-cysteine (L-Cys) kinetics, protein synthesis (PS), and the L-Met incorporation rate in liver protein (L-MetInc) compared with L-Met and DL-Met supplementation in a piglet model. METHODS: Forty-five, 28-d-old weaned piglets (male, German Landrace) were allocated to 4 dietary groups: L-Met-deficient diet [Control: 69% of recommended L-Met plus L-Cys supply; 0.22% standardized ileal digestible (SID) L-Met; 0.27% SID L-Cys; n = 12] and Control diet supplemented equimolarly to 100% of recommended intake with either L-Met (n = 12; LMET), DL-Met (n = 11; DLMET), or DL-HMTBA (n = 10; DLHMTBA). At 47 d of age, the piglets were infused with L-[1-13C; methyl-2H3]-Met and [3,3-2H2]-Cys to determine the kinetics and PS rates. Plasma amino acid (AA) concentrations, hepatic mRNA abundances of L-Met cycle and transsulfuration (TS) enzymes, and L-MetInc were measured. RESULTS: During feed deprivation, L-Met kinetics did not differ between groups, and were ≤3 times higher in the fed state (P < 0.01). Remethylation (RM) was 31% and 45% higher in DLHMTBA than in DLMET and Control pigs, respectively, and the RM:transmethylation (TM) ratio was 50% higher in DLHMTBA than in LMET (P < 0.05). Furthermore, TS and the TS:TM ratio were 32% lower in DLHMTBA than in LMET (P < 0.05). L-MetInc was 42% lower in DLMET and DLHMTBA than in L-Met-deficient Control pigs, whereas plasma AA and hepatic mRNA abundances were similar among DL-HMTBA-, L-Met-, and DL-Met-supplemented pigs. CONCLUSIONS: In piglets, DL-HMTBA compared with L-Met and DL-Met supplementation increases RM and reduces the TS rate to conserve L-Met, but all 3 Met isomers support growth at a comparable rate.


Asunto(s)
Proteínas en la Dieta/metabolismo , Metionina/análogos & derivados , Metionina/metabolismo , Porcinos/fisiología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Cisteína/administración & dosificación , Cisteína/química , Cisteína/metabolismo , Dieta/veterinaria , Proteínas en la Dieta/química , Metionina/administración & dosificación , Metionina/química , Distribución Aleatoria
17.
J Dairy Sci ; 102(7): 6559-6570, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31103305

RESUMEN

The variation in feed efficiency among dairy cows is due to differences in fermentation and digestion characteristics, but recent studies have suggested that various aspects of postabsorptive metabolic processes including heat production or the metabolizable energy for maintenance are more crucial. Thus, metabolic efficiency largely determines feed efficiency, but whether divergent feed efficient cows differ in O2 consumption and metabolic CO2 production, directly determining the metabolic rate has not been investigated. Therefore, the objective of the present study was to determine whether variation in ME intake (MEI), O2 consumption, and metabolic CO2 production account for the variation in metabolic efficiency of dairy cows and whether this effect persists across the lactation cycle. Eighteen cows with different German breeding value functional herd life were kept in freestalls with ad libitum access to a total mixed ration that was kept constant in composition throughout the first lactation. Cows were blood sampled and weighed at wk 5, 13, and 42 postpartum (pp) and transferred into respiration chambers. Animals were retrospectively clustered according to MEI, O2 consumption, and metabolic CO2 production, each normalized to metabolic body weight (mBW). Cluster analysis revealed 9 high metabolically efficient (high-Meff) and 9 low metabolically efficient cows. The high-Meff cows had greater MEI and feed conversion efficiency, produced less metabolic CO2 and methane, had a stronger negative energy balance, and tended to have a lower metabolic respiratory quotient. Further, high-Meff cows had lower residual MEI, less heat energy loss, and lower plasma glucose concentrations, but used a greater portion of body reserves instead of feed energy for milk synthesis, particularly at wk 5 and 13 pp. However, these group differences did not persist by wk 42 pp. Cow groups were not different in O2 consumption, milk yield, metabolizable energy for maintenance, or the efficiency of tissue utilization for milk synthesis, but high-Meff cows tended to have the lower German relative breeding value functional herd life, indicating a link between metabolic performance and productive lifespan. In conclusion, the use of a clustering approach involving MEI/mBW, O2/mBW, and CO2/mBW seems to be a promising method to differentiate cows with divergent metabolic efficiency but does not allow identifying an individual metabotype that persists across the whole lactation cycle.


Asunto(s)
Bovinos/metabolismo , Metabolómica/métodos , Animales , Peso Corporal , Bovinos/crecimiento & desarrollo , Dieta/veterinaria , Metabolismo Energético , Femenino , Lactancia , Metano/análisis , Metano/metabolismo , Leche/metabolismo , Periodo Posparto/metabolismo , Estudios Retrospectivos , Termogénesis
18.
J Dairy Sci ; 102(2): 1788-1802, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30594371

RESUMEN

Milk fatty acids (MFA) are a proxy for the prediction of CH4 emission from cows, and prediction differs with diet. Our objectives were (1) to compare the effect of diets on the relation between MFA profile and measured CH4 production, (2) to predict CH4 production based on 6 data sets differing in the number and type of MFA, and (3) to test whether additional inclusion of energy-corrected milk (ECM) yield or dry matter intake (DMI) as explanatory variables improves predictions. Twenty dairy cows were used. Four diets were used based on corn silage (CS) or grass silage (GS) without (L0) or with linseed (LS) supplementation. Ten cows were fed CS-L0 and CS-LS and the other 10 cows were fed GS-L0 and GS-LS in random order. In feeding wk 5 of each diet, CH4 production (L/d) was measured in respiration chambers for 48 h and milk was analyzed for MFA concentrations by gas chromatography. Specific CH4 prediction equations were obtained for L0-, LS-, GS-, and CS-based diets and for all 4 diets collectively and validated by an internal cross-validation. Models were developed containing either 43 identified MFA or a reduced set of 7 groups of biochemically related MFA plus C16:0 and C18:0. The CS and LS diets reduced CH4 production compared with GS and L0 diets, respectively. Methane yield (L/kg of DMI) reduction by LS was higher with CS than GS diets. The concentrations of C18:1 trans and n-3 MFA differed among GS and CS diets. The LS diets resulted in a higher proportion of unsaturated MFA at the expense of saturated MFA. When using the data set of 43 individual MFA to predict CH4 production (L/d), the cross-validation coefficient of determination (R2CV) ranged from 0.47 to 0.92. When using groups of MFA variables, the R2CV ranged from 0.31 to 0.84. The fit parameters of the latter models were improved by inclusion of ECM or DMI, but not when added to the data set of 43 MFA for all diets pooled. Models based on GS diets always had a lower prediction potential (R2CV = 0.31 to 0.71) compared with data from CS diets (R2CV = 0.56 to 0.92). Models based on LS diets produced lower prediction with data sets with reduced MFA variables (R2CV = 0.62 to 0.68) compared with L0 diets (R2CV = 0.67 to 0.80). The MFA C18:1 cis-9 and C24:0 and the monounsaturated FA occurred most often in models. In conclusion, models with a reduced number of MFA variables and ECM or DMI are suitable for CH4 prediction, and CH4 prediction equations based on diets containing linseed resulted in lower prediction accuracy.


Asunto(s)
Alimentación Animal/análisis , Bovinos/metabolismo , Ácidos Grasos/metabolismo , Metano/metabolismo , Leche/metabolismo , Animales , Dieta/veterinaria , Ácidos Grasos/análisis , Femenino , Lino/química , Lino/metabolismo , Lactancia , Leche/química , Poaceae/metabolismo , Ensilaje/análisis , Zea mays/metabolismo
19.
Physiol Genomics ; 50(9): 726-734, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29906208

RESUMEN

Feed efficiency (FE) is a measure of the rate between feed intake and body weight gain and is subject to constant progress in pigs, based on extensive performance tests and analyses of physiological parameters. However, endocrine regulatory circuits that comprise the sensation and perception of intrinsic requirements and appropriate systemic responses have not yet been fully elucidated. It is hypothesized that the gut-brain axis, which is a network of hierarchical anterior regulatory tissues, contributes largely to variations in FE. Therefore, full-sib pigs with extreme residual feed intake values were assigned to experimental groups of high and low FE. Relevant hormones, minerals, and metabolites including fatty acid profiles were analyzed in serum to assess postprandial conditions. Transcriptome profiles were deduced from intestinal (duodenum, jejunum, ileum) and neuroendocrine tissues (hypothalamus). Serum analyses of feed-efficient animals showed an increased content of the incretin GIP, calcium, magnesium, ß-hydroxybutyric acid, and fat compared with low-FE pigs. Complementary expression profiles in intestinal tissues indicate a modulated permeability and host-microbe interaction in FE-divergent pigs. Transcriptomic analyses of the hypothalamus showed that differences between the FE groups in appetite and satiety regulation are less pronounced. However, hypothalamic abundance of transcripts like ADCY7, LHCGR, and SLC2A7 and molecular signatures in local and systemic tissue sites indicate that increased allocation and circulation of energy equivalents, minerals, and hormones are promoted in feed-efficient animals. Overall, patterns of gastrointestinal hormones and gene expression profiles identified host-microbiota interaction, intestinal permeability, feed intake regulation, and energy expenditure as potential mechanisms affecting FE in pigs.


Asunto(s)
Conducta Alimentaria , Hormonas/sangre , Nutrientes/sangre , Porcinos/sangre , Porcinos/genética , Animales , Ácidos Grasos/sangre , Ontología de Genes , Redes Reguladoras de Genes , Minerales/sangre , Factores de Tiempo , Transcripción Genética
20.
J Dairy Sci ; 101(6): 5102-5114, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29550115

RESUMEN

Considerable interest exists both from an environmental and economic perspective in reducing methane emissions from agriculture. In ruminants, CH4 is produced by a complex community of microorganisms that is established in early life but can be influenced by external factors such as feed. Although CH4 emissions were thought to be constant once an animal reached maturity, recent studies have shown that CH4 yield significantly increases from early to late lactation in dairy cows. The aim of this study was to test the hypothesis that increases in CH4 yield over the lactation cycle are related to changes in rumen microbial community structure. Nine cows were monitored throughout their first lactation cycle. Methane and dry matter intake were measured to calculate CH4 per dry matter intake (CH4 yield) and ruminal fluid was collected during early, mid, and late lactation. A significant difference in bacterial and archaeal community structure during early and late lactation was observed. Furthermore, when ruminal short-chain fatty acid concentrations were measured, the ratio of acetate and butyrate to propionate was significantly higher in late lactation compared with early lactation. Propionate concentrations were higher in cows with low CH4 yield during late lactation, but no differences were observed in bacterial or archaeal community structures. Prevotella dominated the rumen of cows followed by Succinclasticum; Treponema, Fibrobacter, Ruminococcus, and Bifidobacterium were also in high abundance relative to other bacterial genera. In general, positive correlations were stronger between the most relatively abundant bacterial genera and acetate and butyrate concentrations in the cows with high CH4 and weaker between these genera and propionate concentration. This study indicates that increased CH4 yield in late lactation is reflected in significant changes in microbial community structure.


Asunto(s)
Lactancia/fisiología , Metano/biosíntesis , Rumen/microbiología , Alimentación Animal , Animales , Bovinos , Dieta , Femenino , Fermentación , Lactancia/metabolismo , Leche
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA