Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomedicine ; 47: 102613, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36252911

RESUMEN

The current challenges in cancer treatment using conventional therapies have made the emergence of nanotechnology with more advancements. The exponential growth of nanoscience has drawn to develop nanomaterials (NMs) with therapeutic activities. NMs have enormous potential in cancer treatment by altering the drug toxicity profile. Nanoparticles (NPs) with enhanced surface characteristics can diffuse more easily inside tumor cells, thus delivering an optimal concentration of drugs at tumor site while reducing the toxicity. Cancer cells can be targeted with greater affinity by utilizing NMs with tumor specific constituents. Furthermore, it bypasses the bottlenecks of indiscriminate biodistribution of the antitumor agent and high administration dosage. Here, we focus on the recent advances on the use of various nanomaterials for cancer treatment, including targeting cancer cell surfaces, tumor microenvironment (TME), organelles, and their mechanism of action. The paradigm shift in cancer management is achieved through the implementation of anticancer drug delivery using nano routes.


Asunto(s)
Nanotecnología , Distribución Tisular
2.
Micron ; 172: 103486, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37262930

RESUMEN

Recent advancements in the field of nanotechnology have enabled targeted delivery of drug agents in vivo with minimal side effects. The use of nanoparticles for bio-imaging has revolutionized the field of nanomedicine by enabling non-invasive targeting and selective delivery of active drug moieties in vivo. Various inorganic nanomaterials like mesoporous silica nanoparticles, gold nanoparticles, magnetite nanoparticles graphene-based nanomaterials etc., have been created for multimodal therapies with varied multi-imaging modalities. These nanomaterials enable us to overcome the disadvantages of conventional imaging contrast agents (organic dyes) such as lack of stability in vitro and in vivo, high reactivity, low-quantum yield and poor photo stability. Inorganic nanomaterials can be easily fabricated, functionalised and modified as per requirements. Recently, advancements in synthesis techniques, such as the ability to generate molecules and construct supramolecular structures for specific functionalities, have boosted the usage of engineered nanomaterials. Their intrinsic physicochemical properties are unique and they possess excellent biocompatibility. Inorganic nanomaterial research has developed as the most actively booming research fields in biotechnology and biomedicine. Inorganic nanomaterials like gold nanoparticles, magnetic nanoparticles, mesoporous silica nanoparticles, graphene-based nanomaterials and quantum dots have shown excellent use in bioimaging, targeted drug delivery and cancer therapies. Biocompatibility of nanomaterials is an important aspect for the evolution of nanomaterials in the bench to bedside transition. The conduction of thorough and meticulous study for safety and efficacy in well-designed clinical trials is absolutely necessary to determine the functional and structural relationship between the engineered nanomaterial and its toxicity. In this article an attempt is made to throw some light on the current scenario and developments made in the field of nanomaterials in bioimaging.


Asunto(s)
Grafito , Nanopartículas de Magnetita , Nanopartículas , Grafito/química , Oro/química , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Dióxido de Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA