Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
BMC Genomics ; 18(1): 675, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28859611

RESUMEN

BACKGROUND: Cotton fibre is a single cell and it is one of the best platforms for unraveling the genes express during various stages of fibre development. There are reports devoted to comparative transcriptome study on fiber cell initiation and elongation in tetraploid cultivated cotton. However, in the present investigation, comparative transcriptome study was made in diploid cultivated cotton using isogenic fuzzy-lintless (Fl) and normal fuzzy linted (FL) lines belong to Gossypium arboreum, diploid species at two stages, 0 and 10 dpa (days post anthesis), using Affymetrix cotton GeneChip genome array. RESULT: Scanning electron microscopy (SEM) analysis uncovered the occurrence of few fibre cell initials in the Fl line as compared to many in Normal FL at -2 and 0 dpa. However, at 10 dpa there were no fibre cells found elongated in Fl but many elongated cells were found in FL line. Up-regulation of transcription factors, AP2-EREBP, C2H2, C3H, HB and WRKY was observed at 0 dpa whereas in 10 dpa transcription factors, AP2-EREBP, AUX/IAA, bHLH, C2H2, C3H, HB, MYB, NAC, Orphans, PLATZ and WRKY were found down regulated in Fl line. These transcription factors were mainly involved in metabolic pathways such as phytohormone signaling, energy metabolism of cell, fatty acid metabolism, secondary metabolism and other signaling pathways and are related directly or indirectly in fiber development. Quantitative real-time PCR was performed to check fold up or down-regulation of these genes and transcription factors (TFs) down regulated in mutants as compared to normal at 0 and 10 dpa. CONCLUSION: This study elucidates that the up-regulation of transcription factors like AP2-EREBP, C2H2, C3H, HB, WRKY and phytohormone signaling genes at 0 dpa and their down-regulation at the 10 dpa might have constrain the fibre elongation in fuzzy-lintless line. Along with this the down-regulation of genes involved in synthesis of VLCFA chain, transcripts necessary for energy and cell wall metabolism, EXPANSINs, arabinogalactan proteins (AGPs), tubulin might also be the probable reason for reduced growth of fibres in the Fl. Plant receptor-like kinases (RLKs), Leucine Rich Repeats) LRR- family protein and signal transduction coding for mitogen-activated protein kinase (MAPK) cascade, have been engaged in coordination of cell elongation and SCW biosynthesis, down-regulation of these might loss the function leads to reduced fibre growth.


Asunto(s)
Fibra de Algodón , Diploidia , Gossypium/crecimiento & desarrollo , Gossypium/genética , Pared Celular/metabolismo , Metabolismo Energético/genética , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Gossypium/citología , Gossypium/metabolismo , Anotación de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética
2.
Plant Biotechnol J ; 14(6): 1438-55, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26799171

RESUMEN

Cotton bollworm, Helicoverpa armigera, is a major insect pest that feeds on cotton bolls causing extensive damage leading to crop and productivity loss. In spite of such a major impact, cotton plant response to bollworm infection is yet to be witnessed. In this context, we have studied the genome-wide response of cotton bolls infested with bollworm using transcriptomic and proteomic approaches. Further, we have validated this data using semi-quantitative real-time PCR. Comparative analyses have revealed that 39% of the transcriptome and 35% of the proteome were differentially regulated during bollworm infestation. Around 36% of significantly regulated transcripts and 45% of differentially expressed proteins were found to be involved in signalling followed by redox regulation. Further analysis showed that defence-related stress hormones and their lipid precursors, transcription factors, signalling molecules, etc. were stimulated, whereas the growth-related counterparts were suppressed during bollworm infestation. Around 26% of the significantly up-regulated proteins were defence molecules, while >50% of the significantly down-regulated were related to photosynthesis and growth. Interestingly, the biosynthesis genes for synergistically regulated jasmonate, ethylene and suppressors of the antagonistic factor salicylate were found to be up-regulated, suggesting a choice among stress-responsive phytohormone regulation. Manual curation of the enzymes and TFs highlighted the components of retrograde signalling pathways. Our data suggest that a selective regulatory mechanism directs the reallocation of metabolic resources favouring defence over growth under bollworm infestation and these insights could be exploited to develop bollworm-resistant cotton varieties.


Asunto(s)
Genoma de Planta , Gossypium/genética , Mariposas Nocturnas/fisiología , Inmunidad de la Planta/genética , Animales , Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , Estudio de Asociación del Genoma Completo , Gossypium/metabolismo , Interacciones Huésped-Parásitos , Redes y Vías Metabólicas , Oxidación-Reducción , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteómica , Transducción de Señal , Transcriptoma
3.
Mol Cell Proteomics ; 12(12): 3677-89, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24019148

RESUMEN

Cotton ovule epidermal cell differentiation into long fibers primarily depends on wall-oriented processes such as loosening, elongation, remodeling, and maturation. Such processes are governed by cell wall bound structural proteins and interacting carbohydrate active enzymes. Glycosylation plays a major role in the structural, functional, and localization aspects of the cell wall and extracellular destined proteins. Elucidating the glycoproteome of fiber cells would reflect its wall composition as well as compartmental requirement, which must be system specific. Following complementary proteomic approaches, we have identified 334 unique proteins comprising structural and regulatory families. Glycopeptide-based enrichment followed by deglycosylation with PNGase F and A revealed 92 unique peptides containing 106 formerly N-linked glycosylated sites from 67 unique proteins. Our results showed that structural proteins like arabinogalactans and carbohydrate active enzymes were relatively more abundant and showed stage- and isoform-specific expression patterns in the differentiating fiber cell. Furthermore, our data also revealed the presence of heterogeneous and novel forms of structural and regulatory glycoproteins. Comparative analysis with other plant glycoproteomes highlighted the unique composition of the fiber glycoproteome. The present study provides the first insight into the identity, abundance, diversity, and composition of the glycoproteome within single celled cotton fibers. The elucidated composition also indirectly provides clues about unicellular compartmental requirements underlying single cell differentiation.


Asunto(s)
Pared Celular/química , Regulación de la Expresión Génica de las Plantas , Glicoproteínas/química , Gossypium/química , Células Vegetales/química , Proteínas de Plantas/química , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Diferenciación Celular , Pared Celular/genética , Pared Celular/metabolismo , Fibra de Algodón , Electroforesis en Gel de Poliacrilamida , Regulación del Desarrollo de la Expresión Génica , Glicómica , Glicoproteínas/genética , Glicoproteínas/aislamiento & purificación , Glicosilación , Gossypium/genética , Gossypium/metabolismo , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/química , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteómica , Análisis de la Célula Individual , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
Biotechnol Lett ; 37(4): 907-19, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25413882

RESUMEN

A novel stress tolerance cDNA fragment encoding GhDRIN1 protein was identified and its regulation was studied in cotton boll tissues and seedlings subjected to various biotic and abiotic stresses. Phylogenetic and conserved domain prediction indicated that GhDRIN1 was annotated with a hypothetical protein of unknown function. Subcellular localization showed that GhDRIN1 is localized in the chloroplasts. The promoter sequence was isolated and subjected to in silico study. Various cis-acting elements responsive to biotic and abiotic stresses and hormones were found. Transgenic tobacco seedlings exhibited better growth on amended MS medium and showed minimal leaf damage in insect bioassays carried out with Helicoverpa armigera larvae. Transgenic tobacco showed better tolerance to water-deficit and fast recovered upon rewatering. Present work demonstrated that GhDRIN1, a novel stress tolerance gene of cotton, positively regulates the response to biotic and abiotic stresses in transgenic tobacco.


Asunto(s)
Gossypium/genética , Nicotiana/fisiología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Estrés Fisiológico , Animales , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Medios de Cultivo/química , Deshidratación , Expresión Génica , Lepidópteros/fisiología , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Nicotiana/parasitología
5.
Arch Microbiol ; 196(6): 385-94, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24643448

RESUMEN

The nitrate assimilation pathway and its regulation in the high-protein neutraceutical cyanobacterium, Arthrospira (Spirulina), were studied. A complete characterization of the genes of the nitrate uptake and assimilatory pathway in Arthrospira platensis strain PCC 7345 was done including cloning, sequencing, phylogenetic analysis and expression studies. Genomic localization studies revealed that their clustering is different from the operons known in other cyanobacteria; only nrtP and narB are organized together, while nirA, glnA and gltS exist in separate genomic locations. The presence of both types of nitrate transporters (nrtP/ABC types) in A. platensis is rare, as their occurrence is usually specific to marine and freshwater microorganisms, respectively. The positive effect of nitrate on transcript accumulation of narB, nirA and nrtP genes in N-depleted and N-restored cultures confirmed nitrate induction, which is abolished by the addition of ammonium ions into the medium. Gene expression studies in response to nitrate, nitrite, ammonium and glutamine provided the first evidence of differential regulation of multiple genes of nitrate assimilatory pathway in Arthrospira.


Asunto(s)
Cianobacterias/genética , Cianobacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , Nitratos/metabolismo , Compuestos de Amonio/farmacología , Proteínas de Transporte de Anión/genética , Cianobacterias/clasificación , Activación Enzimática/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Orden Génico , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/farmacología , Datos de Secuencia Molecular , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Transportadores de Nitrato , Nitratos/farmacología , Nitrito Reductasas/genética , Nitrito Reductasas/metabolismo , Nitritos/metabolismo , Nitritos/farmacología , Filogenia
6.
BMC Genomics ; 13: 624, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23151214

RESUMEN

BACKGROUND: Fuzzless-lintless cotton mutants are considered to be the ideal material to understand the molecular mechanisms involved in fibre cell development. Although there are few reports on transcriptome and proteome analyses in cotton at fibre initiation and elongation stages, there is no comprehensive comparative transcriptome analysis of fibre-bearing and fuzzless-lintless cotton ovules covering fibre initiation to secondary cell wall (SCW) synthesis stages. In the present study, a comparative transcriptome analysis was carried out using G. hirsutum L. cv. MCU5 wild-type (WT) and it's near isogenic fuzzless-lintless (fl) mutant at fibre initiation (0 dpa/days post anthesis), elongation (5, 10 and 15 dpa) and SCW synthesis (20 dpa) stages. RESULTS: Scanning electron microscopy study revealed the delay in the initiation of fibre cells and lack of any further development after 2 dpa in the fl mutant. Transcriptome analysis showed major down regulation of transcripts (90%) at fibre initiation and early elongation (5 dpa) stages in the fl mutant. Majority of the down regulated transcripts at fibre initiation stage in the fl mutant represent calcium and phytohormone mediated signal transduction pathways, biosynthesis of auxin and ethylene and stress responsive transcription factors (TFs). Further, transcripts involved in carbohydrate and lipid metabolisms, mitochondrial electron transport system (mETS) and cell wall loosening and elongation were highly down-regulated at fibre elongation stage (5-15 dpa) in the fl mutant. In addition, cellulose synthases and sucrose synthase C were down-regulated at SCW biosynthesis stage (15-20 dpa). Interestingly, some of the transcripts (~50%) involved in phytohormone signalling and stress responsive transcription factors that were up-regulated at fibre initiation stage in the WT were found to be up-regulated at much later stage (15 dpa) in fl mutant. CONCLUSIONS: Comparative transcriptome analysis of WT and its near isogenic fl mutant revealed key genes and pathways involved at various stages of fibre development. Our data implicated the significant role of mitochondria mediated energy metabolism during fibre elongation process. The delayed expression of genes involved in phytohormone signalling and stress responsive TFs in the fl mutant suggests the need for a coordinated expression of regulatory mechanisms in fibre cell initiation and differentiation.


Asunto(s)
Fibra de Algodón , Genes de Plantas/genética , Genómica , Gossypium/crecimiento & desarrollo , Gossypium/genética , Mutación , Transducción de Señal/genética , Señalización del Calcio/genética , Metabolismo de los Hidratos de Carbono/genética , Pared Celular/metabolismo , Transporte de Electrón/genética , Metabolismo Energético/genética , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Gossypium/anatomía & histología , Gossypium/metabolismo , Homeostasis/genética , Mitocondrias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Ósmosis , Reguladores del Crecimiento de las Plantas/metabolismo , Estabilidad Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética
7.
Plant Mol Biol ; 78(3): 223-46, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22143977

RESUMEN

Cotton is an important source of natural fibre used in the textile industry and the productivity of the crop is adversely affected by drought stress. High throughput transcriptomic analyses were used to identify genes involved in fibre development. However, not much information is available on cotton genome response in developing fibres under drought stress. In the present study a genome wide transcriptome analysis was carried out to identify differentially expressed genes at various stages of fibre growth under drought stress. Our study identified a number of genes differentially expressed during fibre elongation as compared to other stages. High level up-regulation of genes encoding for enzymes involved in pectin modification and cytoskeleton proteins was observed at fibre initiation stage. While a large number of genes encoding transcription factors (AP2-EREBP, WRKY, NAC and C2H2), osmoprotectants, ion transporters and heat shock proteins and pathways involved in hormone (ABA, ethylene and JA) biosynthesis and signal transduction were up-regulated and genes involved in phenylpropanoid and flavonoid biosynthesis, pentose and glucuronate interconversions and starch and sucrose metabolism pathways were down-regulated during fibre elongation. This study showed that drought has relatively less impact on fibre initiation but has profound effect on fibre elongation by down-regulating important genes involved in cell wall loosening and expansion process. The comprehensive transcriptome analysis under drought stress has provided valuable information on differentially expressed genes and pathways during fibre development that will be useful in developing drought tolerant cotton cultivars without compromising fibre quality.


Asunto(s)
Gossypium/crecimiento & desarrollo , Gossypium/genética , Aclimatación/genética , Aclimatación/fisiología , División Celular , Pared Celular/genética , Pared Celular/metabolismo , Fibra de Algodón , Regulación hacia Abajo , Sequías , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Gossypium/metabolismo , Redes y Vías Metabólicas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Regulación hacia Arriba
8.
Int J Biol Macromol ; 205: 185-192, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35182560

RESUMEN

Evolving insect resistance to delta-endotoxins can be delayed by using a few strategies like high dosage, refugia, and gene stacking which require the expression of delta-endotoxins at sufficiently high levels to kill the resistant insects. In this study, we comparatively analyzed the efficacy of targeting truncated cry1Ac protein to the cytoplasm, endoplasmic reticulum (ER), and chloroplast to obtain high protein expression. mRNA and protein profiling of cry1Ac showed that both ER and chloroplast are efficient targets for expressing high levels of truncated cry1Ac. A maximum of 0.8, 1.6, and 2.0% cry1Ac of total soluble protein were obtained when the truncated cry1Ac was expressed in the cytoplasm, routed through ER, and targeted to the chloroplast. We further showed that not only the protein content but also the biological activity of truncated cry1Ac increases by sub-cellular targeting and the biological activity is slightly greater in the ER routed transgenic lines by conducting different bioassays on Helicoverpa armigera. Using native Western analysis, we demonstrated that the truncated cry1Ac protein could exist as oligomers in plant cells and this oligomerization capability is low in the cytoplasm. In conclusion, routing of delta endotoxins through ER is the first choice to obtain high protein expression and bioactivity.


Asunto(s)
Bacillus thuringiensis , Mariposas Nocturnas , Animales , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Endotoxinas/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacología , Larva/metabolismo , Mariposas Nocturnas/genética
9.
Protein J ; 41(2): 327-336, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119603

RESUMEN

Transgenic crops expressing Cry δ-endotoxins of Bacillus thuringiensis for insect resistance have been commercialized worldwide with increased crop productivity and spectacular socioeconomic gains. To attain the enhanced level of protein expression, the cry genes have to be extensively modified for RNA stability and translation efficiency in the plant systems. However, such modifications in nucleotide sequences make it difficult to express the cry genes in Escherichia coli because of the presence of E. coli rare codons. Induction of gene expression through the T7 promoter/lac operator system results in high levels of transcription but limits the availability of activated tRNA corresponding to rare codons that leads to translation stalling at ribosomes. In the present study, an Isopropyl ß-D-1-thiogalactopyranoside (IPTG)/rifampicin combination-based approach was adopted to induce transcription of cry genes through T7 promoter/lac operator while simultaneously inhibiting the transcription of host genes through rifampicin. The results show that the IPTG/rifampicin combination leads to high-level expression of four plant codon-optimized cry genes (cry2Aa, cry1F, cry1Ac, and cry1AcF). Northern blot analysis of the cry gene expressing E. coli samples showed that the RNA expression level in the IPTG-induced samples was higher as compared to that in the IPTG/rifampicin-induced samples. Diet overlay insect bioassay of IPTG/rifampicin-induced Cry toxins with Helicoverpa armigera larvae showed bioactivity (measured as LC50) similar to the previous studies. The experiment has proved that recombinant synthetic gene (plant codon-optimized gene) with the combination of Rifampicin which inhibits DNA-dependent bacterial RNA polymerase and reduces the excessive baggage of translational machinery of the bacterial cell triggers the production of synthetic protein. Purification of protein using high pH buffer increases the solubility of the protein. Further, LC50 analysis shows no reduction of protein activity leads to protein stability. Further, purified cry toxin protein can be used for crop protection against pests and a purified form of the synthetic protein can be used for antibody production and perform the immunoassay for the identification of the transgenic plant. The crystallographic structure of synthetic protein could be used for interaction study with another insect to see insecticidal activity.


Asunto(s)
Bacillus thuringiensis , Endotoxinas , Animales , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Codón , Escherichia coli/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacología , Isopropil Tiogalactósido , Larva , Rifampin/farmacología
10.
Plant Mol Biol ; 76(3-5): 407-23, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21327516

RESUMEN

Photosynthesis in higher land plants is a complex process involving several proteins encoded by both nuclear and chloroplast genomes that require a highly coordinated gene expression. Significant changes in plastid differentiation and biochemical processes are associated with the deletion of chloroplast genes. In this study we report the genome-wide responses caused by the deletion of tobacco psaA and psbA genes coding core components of photosystem I (PSI) and photosystem II (PSII), respectively, generated through a chloroplast genetic engineering approach. Transcriptomic and quantitative proteomic analysis showed the down regulation of specific groups of nuclear and chloroplast genes involved in photosynthesis, energy metabolism and chloroplast biogenesis. Moreover, our data show simultaneous activation of several defense and stress responsive genes including those involved in reactive oxygen species (ROS) scavenging mechanisms. A major finding is the differential transcription of the plastome of deletion mutants: genes known to be transcribed by the plastid encoded polymerase (PEP) were generally down regulated while those transcribed by the nuclear encoded polymerase (NEP) were up regulated, indicating simultaneous activation of multiple signaling pathways in response to disruption of PSI and PSII complexes. The genome wide transcriptomic and proteomic analysis of the ∆psaA and ∆psbA deletion mutants revealed a simultaneous up and down regulation of the specific groups of genes located in nucleus and chloroplasts suggesting a complex circuitry involving both retrograde and anterograde signaling mechanisms responsible for the coordinated expression of nuclear and chloroplast genomes.


Asunto(s)
Eliminación de Gen , Perfilación de la Expresión Génica , Genoma de Planta , Nicotiana/genética , Proteínas de Plantas/genética , Proteoma , Secuencia de Bases , Cromatografía Liquida , Cartilla de ADN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Nicotiana/metabolismo , Nicotiana/fisiología
11.
PLoS One ; 13(3): e0194150, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29547640

RESUMEN

The polyphagous insect-pest, Helicoverpa armigera, is a serious threat to a number of economically important crops. Chemical application and/or cultivation of Bt transgenic crops are the two strategies available now for insect-pest management. However, environmental pollution and long-term sustainability are major concerns against these two options. RNAi is now considered as a promising technology to complement Bt to tackle insect-pests menace. In this study, we report host-delivered silencing of HaAce1 gene, encoding the predominant isoform of H. armigera acetylcholinesterase, by an artificial microRNA, HaAce1-amiR1. Arabidopsis pre-miRNA164b was modified by replacing miR164b/miR164b* sequences with HaAce1-amiR1/HaAce1-amiR1* sequences. The recombinant HaAce1-preamiRNA1 was put under the control of CaMV 35S promoter and NOS terminator of plant binary vector pBI121, and the resultant vector cassette was used for tobacco transformation. Two transgenic tobacco lines expressing HaAce1-amiR1 was used for detached leaf insect feeding bioassays. Larval mortality of 25% and adult deformity of 20% were observed in transgenic treated insect group over that control tobacco treated insect group. The reduction in the steady-state level of HaAce1 mRNA was 70-80% in the defective adults compared to control. Our results demonstrate promise for host-delivered amiRNA-mediated silencing of HaAce1 gene for H. armigera management.


Asunto(s)
Acetilcolinesterasa/genética , Silenciador del Gen , Proteínas de Insectos/genética , MicroARNs , Mariposas Nocturnas/crecimiento & desarrollo , Acetilcolinesterasa/biosíntesis , Animales , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/biosíntesis , MicroARNs/genética , MicroARNs/farmacología , Mariposas Nocturnas/genética , Control Biológico de Vectores
12.
Appl Biochem Biotechnol ; 178(3): 433-50, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26472671

RESUMEN

Brinjal/eggplant/aubergine is one of the major solanaceous vegetable crops. Recent availability of genome information greatly facilitates the fundamental research on brinjal. Gene expression patterns during different stages of fruit development can provide clues towards the understanding of its biological functions. Quantitative real-time PCR (qPCR) has become one of the most widely used methods for rapid and accurate quantification of gene expression. However, its success depends on the use of a suitable reference gene for data normalization. For qPCR analysis, a single reference gene is not universally suitable for all experiments. Therefore, reference gene validation is a crucial step. Suitable reference genes for qPCR analysis of brinjal fruit development have not been investigated so far. In this study, we have selected 21 candidate reference genes from the Brinjal (Solanum melongena) Plant Gene Indices database (compbio.dfci.harvard.edu/tgi/plant.html) and studied their expression profiles by qPCR during six different fruit developmental stages (0, 5, 10, 20, 30, and 50 days post anthesis) along with leaf samples of the Pusa Purple Long (PPL) variety. To evaluate the stability of gene expression, geNorm and NormFinder analytical softwares were used. geNorm identified SAND (SAND family protein) and TBP (TATA binding protein) as the best pairs of reference genes in brinjal fruit development. The results showed that for brinjal fruit development, individual or a combination of reference genes should be selected for data normalization. NormFinder identified Expressed gene (expressed sequence) as the best single reference gene in brinjal fruit development. In this study, we have identified and validated for the first time reference genes to provide accurate transcript normalization and quantification at various fruit developmental stages of brinjal which can also be useful for gene expression studies in other Solanaceae plant species.


Asunto(s)
Perfilación de la Expresión Génica , Genes de Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Solanum melongena/genética
13.
Appl Biochem Biotechnol ; 177(1): 207-16, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26160315

RESUMEN

One of the critical alarming constraints for agriculture is water scarcity. In the current scenario, global warming due to climate change and unpredictable rainfall, drought is going to be a master player and possess a big threat to stagnating gene pool of staple food crops. So it is necessary to understand the mechanisms that enable the plants to cope with drought stress. In this study, effort was made to prospect the role of EcDehydrin7 protein from normalized cDNA library of drought tolerance finger millet in transgenic tobacco. Biochemical and molecular analyses of T0 transgenic plants were done for stress tolerance. Leaf disc assay, seed germination test, dehydration assay, and chlorophyll estimation showed EcDehydrin7 protein directly link to drought tolerance. Northern and qRT PCR analyses shows relatively high expression of EcDehydrin7 protein compare to wild type. T0 transgenic lines EcDehydrin7(11) and EcDehydrin7(15) shows superior expression among all lines under study. In summary, all results suggest that EcDehydrin7 protein has a remarkable role in drought tolerance and may be used for sustainable crop breeding program in other food crops.


Asunto(s)
Adaptación Fisiológica , Sequías , Eleusine/metabolismo , Nicotiana/genética , Nicotiana/fisiología , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Clorofila/metabolismo , Clonación Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Vectores Genéticos/metabolismo , Germinación , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Semillas/crecimiento & desarrollo , Análisis de Secuencia de ADN , Transformación Genética
14.
Data Brief ; 5: 717-25, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26693171

RESUMEN

The data presented here delineates the glycoproteome component in the elongating cotton fiber cells attained using complementary proteomic approaches followed by protein and N-linked glycosylation site identification (Kumar et al., 2013) [1]. Utilizing species specific protein sequence databases in proteomic approaches often leads to additional information that may not be obtained using cross-species databases. In this context we have reanalyzed our glycoproteome dataset with the Gossypium arboreum, Gossypium raimondii (version 2.0) and Gossypium hirsutum protein databases that has led to the identification of 21 N-linked glycosylation sites and 18 unique glycoproteins that were not reported in our previous study. The 1D PAGE and solution based glycoprotein identification data is publicly available at the ProteomeXchange Consortium via the PRIDE partner repository (Vizcaíno et al., 2013) [2] using the dataset identifier PXD000178 and the 2D PAGE based protein identification and glycopeptide approach based N-linked glycosylation site identification data is available at the ProteomeXchange Consortium via the PRIDE partner repository (Vizcaíno et al., 2013) [2] using the dataset identifier PXD002849.

15.
GM Crops Food ; 5(2): 106-19, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25072186

RESUMEN

A robust phenotypic plasticity to ward off adverse environmental conditions determines performance and productivity in crop plants. Flax (linseed), is an important cash crop produced for natural textile fiber (linen) or oilseed with many health promoting products. This crop is prone to drought stress and yield losses in many parts of the world. Despite recent advances in drought research in a number of important crops, related progress in flax is very limited. Since, response of this plant to drought stress has not been addressed at the molecular level; we conducted microarray analysis to capture transcriptome associated with induced drought in flax. This study identified 183 differentially expressed genes (DEGs) associated with diverse cellular, biophysical and metabolic programs in flax. The analysis also revealed especially the altered regulation of cellular and metabolic pathways governing photosynthesis. Additionally, comparative transcriptome analysis identified a plethora of genes that displayed differential regulation both spatially and temporally. These results revealed co-regulated expression of 26 genes in both shoot and root tissues with implications for drought stress response. Furthermore, the data also showed that more genes are upregulated in roots compared to shoots, suggesting that roots may play important and additional roles in response to drought in flax. With prolonged drought treatment, the number of DEGs increased in both tissue types. Differential expression of selected genes was confirmed by qRT-PCR, thus supporting the suggested functional association of these intrinsic genes in maintaining growth and homeostasis in response to imminent drought stress in flax. Together the present study has developed foundational and new transcriptome data sets for drought stress in flax.


Asunto(s)
Sequías , Lino/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Estrés Fisiológico/genética , Genes de Plantas , Fenotipo
16.
Bioinformation ; 5(8): 326-30, 2011 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-21383919

RESUMEN

Resistance (R) protein recognizes molecular signature of pathogen infection and activates downstream hypersensitive response signalling in plants. R protein works as a molecular switch for pathogen defence signalling and represent one of the largest plant gene family. Hence, understanding molecular structure and function of R proteins has been of paramount importance for plant biologists. The present study is aimed at predicting structure of R proteins signalling domains (CC-NBS) by creating a homology model, refining and optimising the model by molecular dynamics simulation and comparing ADP and ATP binding. Based on sequence similarity with proteins of known structures, CC-NBS domains were initially modelled using CED- 4 (cell death abnormality protein) and APAF-1 (apoptotic protease activating factor) as multiple templates. The final CC-NBS structural model was built and optimized by molecular dynamic simulation for 5 nanoseconds (ns). Docking of ADP and ATP at active site shows that both ligand bind specifically with same residues and with minor difference (1 Kcal/mol) in binding energy. Sharing of binding site by ADP and ATP and low difference in their binding site makes CC-NBS suitable for working as molecular switch. Furthermore, structural superimposition elucidate that CC-NBS and CARD (caspase recruitment domains) domain of CED-4 have low RMSD value of 0.9 A° Availability of 3D structural model for both CC and NBS domains will . help in getting deeper insight in these pathogen defence genes.

17.
Electron. j. biotechnol ; 7(2): 178-188, Aug. 2004. ilus, tab
Artículo en Inglés | LILACS | ID: lil-387556

RESUMEN

Bacillus thuringiensis (Bt) is a valuable environment-friendly biopesticide, which occupies 90 percent of the world biopesticide market. Its insecticidal properties are attributed to the presence of delta-endotoxins which are synthesized during the sporulation phase of the bacterium. delta-endotoxin or crystal toxin is a multi-domain protein molecule comprising of three distinct domains. Domain I is made of seven alpha-helices, domain II comprises three antiparallel beta sheets, which are folded into loops and domain III is made of a beta sandwich of two antiparallel beta strands. Molecular studies on the structure and functional properties of different delta-endotoxins revealed that the domain I by virtue of its membrane spanning hydrophobic and amphipathic alpha-helices is capable of forming pores in the cell membranes of the larval midgut. Domain II being hyper variable in nature determines the insecticidal specificity of a toxin and domain III is involved in varied functions like structural stability, ion channel gating, binding to Brush Border Membrane Vesicles and insecticidal specificity. Recent studies on toxin aggregation and interaction revealed that the three domains interact closely to bring about the insecticidal activity of Bt. In this review we describe the protein engineering studies conducted on different delta-endotoxins which led to an understanding of their molecular mode of action and construction of novel toxins with enhanced insecticidal activity and specificity.


Asunto(s)
Bacillus thuringiensis , Ingeniería de Proteínas , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Membrana Celular , Control Biológico de Vectores/métodos , Conductividad Eléctrica , Endotoxinas/metabolismo , Activación del Canal Iónico , Membrana Dobles de Lípidos , Plaguicidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA