Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cytotherapy ; 23(2): 176-183, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32978066

RESUMEN

BACKGROUND AIMS: The Multisite Evaluation Study on Analytical Methods for Non-Clinical Safety Assessment of Human-Derived Regenerative Medical Products (MEASURE) is a Japanese experimental public-private partnership initiative, which aims to standardize methodology for tumorigenicity evaluation of human pluripotent stem cell (hPSC)-derived cell therapy products (CTPs). Undifferentiated hPSCs possess tumorigenic potential, and thus residual undifferentiated hPSCs are one of the major hazards for the risk of tumor formation from hPSC-derived CTPs. Among currently available assays, a highly efficient culture (HEC) assay is reported to be one of the most sensitive for the detection of residual undifferentiated hPSCs. METHODS: MEASURE first validated the detection sensitivity of HEC assay and then investigated the feasibility of magnetic-activated cell sorting (MACS) to improve sensitivity. RESULTS: The multisite experiments confirmed that the lower limit of detection under various conditions to which the human induced pluripotent stem cell lines and culture medium/substrate were subjected was 0.001%. In addition, MACS concentrated cells expressing undifferentiated cell markers and consequently achieved a detection sensitivity of 0.00002%. CONCLUSIONS: These results indicate that HEC assay is highly sensitive and robust and that the application of MACS on this assay is a promising tool for further mitigation of the potential tumorigenicity risk of hPSC-derived CTPs.


Asunto(s)
Técnicas de Cultivo de Célula , Tratamiento Basado en Trasplante de Células y Tejidos , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular , Separación Celular , Medios de Cultivo , Humanos
2.
Regen Ther ; 26: 315-323, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38983832

RESUMEN

Introduction: MEASURE2 (Multisite Evaluation Study on Analytical Methods for Non-clinical Safety Assessment of HUman-derived REgenerative Medical Products 2) is a Japanese experimental public-private partnership initiative that aims to standardize testing methods for tumorigenicity evaluation of human pluripotent stem cell (hPSC)-derived cell therapy products (CTPs). MEASURE2 organized multisite studies to optimize the methodology of the highly efficient culture (HEC) assay, a sensitive culture-based in vitro assay for detecting residual undifferentiated hPSCs in CTPs. Methods: In these multisite studies, 1) the efficiency of colony formation by human induced pluripotent stem cells (hiPSCs) under two different culture conditions and 2) the sorting efficiency of microbeads conjugated to various anti-hPSC markers during hiPSC enrichment were evaluated using samples in which hiPSCs were spiked into hiPSC-derived mesenchymal stem cells. Results: The efficiency of colony formation was significantly higher under culture conditions with the combination of Chroman 1, Emricasan, Polyamines, and Trans-ISRIB (CEPT) than with Y-27632, which is widely used for the survival of hPSCs. Between-laboratory variance was also smaller under the condition with CEPT than with Y-27632. The sorting efficiency of microbeads conjugated with the anti-Tra-1-60 antibody was sufficiently higher (>80%) than those of the other various microbeads investigated. Conclusions: Results of these multisite studies are expected to contribute to improvements in the sensitivity and robustness of the HEC assay, as well as to the future standardization of the tumorigenicity risk assessment of hPSC-derived CTPs.

3.
Sci Rep ; 14(1): 690, 2024 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184695

RESUMEN

Despite the development of various in vitro differentiation protocols for the efficient derivation of specific cell types, human induced pluripotent stem cell (hiPSC) lines have varing ability to differentiate into specific lineages. Therefore, surrogate markers for accurately predicting the differentiation propensity of hiPSC lines may facilitate cell-based therapeutic product development and manufacture. We attempted to identify marker genes that could predict the differentiation propensity of hiPSCs into neural stem/progenitor cells (NS/PCs). Using Spearman's rank correlation coefficients, we investigated genes in the undifferentiated state, the expression levels of which were significantly correlated with the neuronal differentiation propensity of several hiPSC lines. Among genes significantly correlated with NS/PC differentiation (P < 0.01), we identified ROR2 as a novel predictive marker. ROR2 expression in hiPSCs was negatively correlated with NS/PC differentiation tendency, regardless of the differentiation method, whereas its knockdown enhanced differentiation. ROR2 regulates NS/PC differentiation, suggesting that ROR2 is functionally essential for NS/PC differentiation. Selecting cell lines with relatively low ROR2 expression facilitated identification of hiPSCs that can differentiate into NS/PCs. Cells with ROR2 knockdown showed increased efficiency of differentiation into forebrain GABAergic neurons compared to controls. These findings suggest that ROR2 is a surrogate marker for selecting hiPSC lines appropriate for NS/PC and GABAergic neuronal differentiations.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Diferenciación Celular/genética , Línea Celular , Comercio , Neuronas GABAérgicas , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética
4.
Biol Pharm Bull ; 36(2): 189-92, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23370350

RESUMEN

Human pluripotent stem cells (hPSCs), i.e. human embryonic stem cells and human induced pluripotent stem cells, are able to self-renew and differentiate into multiple cell types. Because of these abilities, numerous attempts have been made to utilize hPSCs in regenerative medicine/cell therapy. hPSCs are, however, also tumorigenic, that is, they can give rise to the progressive growth of tumor nodules in immunologically unresponsive animals. Therefore, assessing and managing the tumorigenicity of all final products is essential in order to prevent ectopic tissue formation, tumor development, and/or malignant transformation elicited by residual pluripotent stem cells after implantation. No detailed guideline for the tumorigenicity testing of hPSC-derived products has yet been issued for regenerative medicine/cell therapy, despite the urgent necessity. Here, we describe the current situations and issues related to the tumorigenicity testing of hPSC-derived products and we review the advantages and disadvantages of several types of tumorigenicity-associated tests. We also refer to important considerations in the execution and design of specific studies to monitor the tumorigenicity of hPSC-derived products.


Asunto(s)
Transformación Celular Neoplásica , Células Madre Pluripotentes , Animales , Guías como Asunto , Humanos , Ratones , Ratones Transgénicos , Organización Mundial de la Salud
5.
Stem Cells Transl Med ; 12(6): 379-390, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37263619

RESUMEN

Human multipotent mesenchymal stromal/stem cells (MSCs) have been utilized in cell therapy for various diseases and their clinical applications are expected to increase in the future. However, the variation in MSC-based product quality due to the MSC heterogeneity has resulted in significant constraints in the clinical utility of MSCs. Therefore, we hypothesized that it might be important to identify and ensure/enrich suitable cell subpopulations for therapies using MSC-based products. In this study, we aimed to identify functional cell subpopulations to predict the efficacy of angiogenic therapy using bone marrow-derived MSCs (BM-MSCs). To assess its angiogenic potency, we observed various levels of vascular endothelial growth factor (VEGF) secretion among 11 donor-derived BM-MSC lines under in vitro ischemic culture conditions. Next, by clarifying the heterogeneity of BM-MSCs using single-cell RNA-sequencing analysis, we identified a functional cell subpopulation that contributed to the overall VEGF production in BM-MSC lines under ischemic conditions. We also found that leucine-rich repeat-containing 75A (LRRC75A) was more highly expressed in this cell subpopulation than in the others. Importantly, knockdown of LRRC75A using small interfering RNA resulted in significant inhibition of VEGF secretion in ischemic BM-MSCs, indicating that LRRC75A regulates VEGF secretion under ischemic conditions. Therefore, LRRC75A may be a useful biomarker to identify cell subpopulations that contribute to the angiogenic effects of BM-MSCs. Our work provides evidence that a strategy based on single-cell transcriptome profiles is effective for identifying functional cell subpopulations in heterogeneous MSC-based products.


Asunto(s)
Células Madre Mesenquimatosas , Factor A de Crecimiento Endotelial Vascular , Humanos , Células de la Médula Ósea , Diferenciación Celular , Proliferación Celular , Isquemia/genética , Isquemia/terapia , Isquemia/metabolismo , Análisis de Expresión Génica de una Sola Célula , Células Madre , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/farmacología
6.
Mol Microbiol ; 80(1): 248-65, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21306442

RESUMEN

Mitochondria of the yeast Saccharomyces cerevisiae contain enzymes Crd1p and Psd1p, which synthesize cardiolipin (CL) and phosphatidylethanolamine respectively. A previous study indicated that crd1Δ is synthetically lethal with psd1Δ. In this study, to identify novel genes involved in CL metabolism, we searched for genes that genetically interact with Psd1p, and found that deletion of FMP30 encoding a mitochondrial inner membrane protein results in a synthetic growth defect with psd1Δ. Although fmp30Δ cells grew normally and exhibited a slightly decreased CL level, fmp30Δpsd1Δ cells exhibited a severe growth defect and an about 20-fold reduction in the CL level, as compared with the wild-type control. We found also that deletion of FMP30 caused a defect in mitochondrial morphology. Furthermore, FMP30 genetically interacted with seven mitochondrial morphology genes. These results indicated that Fmp30p is involved in the maintenance of mitochondrial morphology and required for the accumulation of a normal level of CL in the absence of mitochondrial phosphatidylethanolamine synthesis.


Asunto(s)
Cardiolipinas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Fosfatidiletanolaminas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Western Blotting , Electroforesis en Gel de Poliacrilamida , Potencial de la Membrana Mitocondrial , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Sci Rep ; 12(1): 20243, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36424447

RESUMEN

Entry of the hepatitis C virus (HCV) into host cells is a multistep process mediated by several host factors, including a tight junction protein claudin-1 (CLDN1). We repeatedly passaged HCV-JFH1-tau, an HCV substrain with higher infectivity, on Huh7.5.1-8 cells. A multi-passaged HCV-JFH1-tau lot was infectious to CLDN1-defective S7-A cells, non-permissive to original HCV-JFH1-tau infection. We identified a single mutation, M706L, in the E2 glycoprotein of the HCV-JFH1-tau lot as an essential mutation for infectivity to S7-A cells. The pseudovirus JFH1/M706L mutant could not infect human embryonic kidney 293 T (HEK293T) cells lacking CLDN family but infected HEK293T cells expressing CLDN1, CLDN6, or CLDN9. Thus, this mutant virus could utilize CLDN1, and other CLDN6 and CLDN9, making HCV possible to infect cells other than hepatocytes. iPS cells, one of the stem cells, do not express CLDN1 but express CLDN6 and other host factors required for HCV infection. We confirmed that the HCV-JFH1-tau-derived mutant with an M706L mutation infected iPS cells in a CLDN6-dependent manner. These results demonstrated that a missense mutation in E2 could broaden the CLDN member specificity for HCV infection. HCV may change its receptor requirement through a single amino acid mutation and infect non-hepatic cells.


Asunto(s)
Claudina-1 , Hepacivirus , Hepatitis C , Proteínas del Envoltorio Viral , Humanos , Claudina-1/genética , Células HEK293 , Hepacivirus/genética , Hepatitis C/genética , Mutación Missense , Proteínas del Envoltorio Viral/genética
8.
Nat Commun ; 13(1): 6374, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289215

RESUMEN

Baroreflex control of cardiac contraction (positive inotropy) through sympathetic nerve activation is important for cardiocirculatory homeostasis. Transient receptor potential canonical subfamily (TRPC) channels are responsible for α1-adrenoceptor (α1AR)-stimulated cation entry and their upregulation is associated with pathological cardiac remodeling. Whether TRPC channels participate in physiological pump functions remains unclear. We demonstrate that TRPC6-specific Zn2+ influx potentiates ß-adrenoceptor (ßAR)-stimulated positive inotropy in rodent cardiomyocytes. Deletion of trpc6 impairs sympathetic nerve-activated positive inotropy but not chronotropy in mice. TRPC6-mediated Zn2+ influx boosts α1AR-stimulated ßAR/Gs-dependent signaling in rat cardiomyocytes by inhibiting ß-arrestin-mediated ßAR internalization. Replacing two TRPC6-specific amino acids in the pore region with TRPC3 residues diminishes the α1AR-stimulated Zn2+ influx and positive inotropic response. Pharmacological enhancement of TRPC6-mediated Zn2+ influx prevents chronic heart failure progression in mice. Our data demonstrate that TRPC6-mediated Zn2+ influx with α1AR stimulation enhances baroreflex-induced positive inotropy, which may be a new therapeutic strategy for chronic heart failure.


Asunto(s)
Insuficiencia Cardíaca , Canales Catiónicos TRPC , Ratas , Animales , Ratones , Canal Catiónico TRPC6 , Canales Catiónicos TRPC/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Insuficiencia Cardíaca/metabolismo , beta-Arrestinas/metabolismo , Aminoácidos/metabolismo , Zinc/metabolismo
9.
Sci Rep ; 11(1): 11407, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34075124

RESUMEN

Highly sensitive detection of residual undifferentiated pluripotent stem cells is essential for the quality and safety of cell-processed therapeutic products derived from human induced pluripotent stem cells (hiPSCs). We previously reported the generation of an adenovirus (Ad) vector and adeno-associated virus vectors that possess a suicide gene, inducible Caspase 9 (iCasp9), which makes it possible to sensitively detect undifferentiated hiPSCs in cultures of hiPSC-derived cardiomyocytes. In this study, we investigated whether these vectors also allow for detection of undifferentiated hiPSCs in preparations of hiPSC-derived neural progenitor cells (hiPSC-NPCs), which have been expected to treat neurological disorders. To detect undifferentiated hiPSCs, the expression of pluripotent stem cell markers was determined by immunostaining and flow cytometry. Using immortalized NPCs as a model, the Ad vector was identified to be the most efficient among the vectors tested in detecting undifferentiated hiPSCs. Moreover, we found that the Ad vector killed most hiPSC-NPCs in an iCasp9-dependent manner, enabling flow cytometry to detect undifferentiated hiPSCs intermingled at a lower concentration (0.002%) than reported previously (0.1%). These data indicate that the Ad vector selectively eliminates hiPSC-NPCs, thus allowing for sensitive detection of hiPSCs. This cytotoxic viral vector could contribute to ensuring the quality and safety of hiPSCs-NPCs for therapeutic use.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Células-Madre Neurales/citología , Adenoviridae/genética , Diferenciación Celular , Células Cultivadas , Vectores Genéticos , Humanos
10.
Sci Rep ; 9(1): 3630, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842516

RESUMEN

Cell-processed therapeutic products (CTPs) derived from human pluripotent stem cells (hPSCs) have innovative applications in regenerative medicine. However, undifferentiated hPSCs possess tumorigenic potential; thus, sensitive methods for the detection of residual undifferentiated hPSCs are essential for the clinical use of hPSC-derived CTPs. The detection limit of the methods currently available is 1/105 (0.001%, undifferentiated hPSCs/differentiated cells) or more, which could be insufficient for the detection of residual hPSCs when CTPs contain more than 1 × 105 cells. In this study, we developed a novel approach to overcome this challenge, using adenovirus and adeno-associated virus (AdV and AAV)-based selective cytotoxic vectors. We constructed AdV and AAV vectors that possess a suicide gene, iCaspase 9 (iCasp9), regulated by the CMV promoter, which is dormant in hPSCs, for the selective expression of iCasp9 in differentiated cells. As expected, AdV/CMV-iCasp9 and AAV/CMV-iCasp9 exhibited cytotoxicity in cardiomyocytes but not in human induced pluripotent stem cells (hiPSCs). The vectors also induced apoptosis in hiPSC-derived cardiomyocytes, and the surviving cells exhibited higher levels of hPSC marker expression. These results indicate that the AdV- and AAV-based cytotoxic vectors concentrate cells expressing the undifferentiated cell markers in hiPSC-derived products and are promising biological tools for verifying the quality of CTPs.


Asunto(s)
Adenoviridae/genética , Diferenciación Celular , Dependovirus/genética , Vectores Genéticos/administración & dosificación , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/patología , Medicina Regenerativa , Infecciones por Adenoviridae/virología , Vectores Genéticos/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/virología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/virología , Infecciones por Parvoviridae/virología
11.
Nat Commun ; 10(1): 2175, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31092818

RESUMEN

Clinical applications of human induced pluripotent stem cells (hiPSCs) are expected, but hiPSC lines vary in their differentiation propensity. For efficient selection of hiPSC lines suitable for differentiation into desired cell lineages, here we identify SALL3 as a marker to predict differentiation propensity. SALL3 expression in hiPSCs correlates positively with ectoderm differentiation capacity and negatively with mesoderm/endoderm differentiation capacity. Without affecting self-renewal of hiPSCs, SALL3 knockdown inhibits ectoderm differentiation and conversely enhances mesodermal/endodermal differentiation. Similarly, loss- and gain-of-function studies reveal that SALL3 inversely regulates the differentiation of hiPSCs into cardiomyocytes and neural cells. Mechanistically, SALL3 modulates DNMT3B function and DNA methyltransferase activity, and influences gene body methylation of Wnt signaling-related genes in hiPSCs. These findings suggest that SALL3 switches the differentiation propensity of hiPSCs toward distinct cell lineages by changing the epigenetic profile and serves as a marker for evaluating the hiPSC differentiation propensity.


Asunto(s)
Linaje de la Célula/fisiología , Estratos Germinativos/fisiología , Proteínas de Homeodominio/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Factores de Transcripción/fisiología , Línea Celular , Técnicas de Silenciamiento del Gen , Humanos
12.
Sci Rep ; 9(1): 4638, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30874579

RESUMEN

Selection of human induced pluripotent stem cell (hiPSC) lines with high cardiac differentiation potential is important for regenerative therapy and drug screening. We aimed to identify biomarkers for predicting cardiac differentiation potential of hiPSC lines by comparing the gene expression profiles of six undifferentiated hiPSC lines with different cardiac differentiation capabilities. We used three platforms of gene expression analysis, namely, cap analysis of gene expression (CAGE), mRNA array, and microRNA array to efficiently screen biomarkers related to cardiac differentiation of hiPSCs. Statistical analysis revealed candidate biomarker genes with significant correlation between the gene expression levels in the undifferentiated hiPSCs and their cardiac differentiation potential. Of the candidate genes, PF4 was validated as a biomarker expressed in undifferentiated hiPSCs with high potential for cardiac differentiation in 13 additional hiPSC lines. Our observations suggest that PF4 may be a useful biomarker for selecting hiPSC lines appropriate for the generation of cardiomyocytes.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Factor Plaquetario 4/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Reprogramación Celular/fisiología , Humanos , Células Madre Pluripotentes Inducidas/citología , MicroARNs/genética , Organogénesis/fisiología , Factor Plaquetario 4/genética , ARN Mensajero/genética , Transcriptoma/genética
13.
PLoS One ; 13(10): e0205022, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30286143

RESUMEN

Human induced pluripotent stem cells (hiPSCs) represent promising raw materials of human cell-based therapeutic products (hCTPs). As undifferentiated hiPSCs exhibit intrinsic tumorigenicity properties that enable them to form teratomas, hCTPs containing residual undifferentiated hiPSCs may cause tumor formation following transplantation. We first established quantitative and sensitive tumorigenicity testing of hiPSCs dissociated into single cells using NOD/Shi-scid IL2Rγnull (NOG) mice by inhibiting apoptosis of hiPSCs with a Rho kinase inhibitor. To examine different features in tumorigenicity of various hiPSCs, 10 commonly available hiPSC lines were subjected to in vivo tumorigenicity testing. Transplanted hiPSC lines showed remarkable variation in tumor incidence, formation latency, and volumes. Most of the tumors formed were classified as immature teratomas. However, no signs of malignancies, such as carcinoma and sarcoma, were recognized in the tumors. Characteristics associated tumorigenicity of hiPSCs were investigated with microarray analysis, karyotype analysis, and whole exome sequencing. Gene expression profiling and pathway analysis supported different features of hiPSC lines in tumorigenicity. hiPSC lines showed chromosomal abnormalities in some lines and 61-77 variants of cancer-related genes carrying effective nonsynonymous mutations, which were confirmed in the COSMIC databases. In this study, the chromosomal abnormalities and cancer-related gene mutations observed in hiPSC lines did not lead to the malignancy of tumors derived from hiPSCs. Our results suggest that the potential tumorigenicity risk of hCTPs containing residual undifferentiated hiPSCs is dependent on not only amounts of undifferentiated hiPSCs but also features of the cell lines used as raw materials, a finding that should be considered from the perspective of quality of hCTPs used.


Asunto(s)
Carcinogénesis , Células Madre Pluripotentes Inducidas/patología , Carcinogénesis/genética , Línea Celular , Exoma/genética , Humanos , Cariotipo , Transcriptoma
14.
Sci Rep ; 7(1): 8163, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811571

RESUMEN

Human pluripotent stem cells (hPSCs) are leading candidate raw materials for cell-based therapeutic products (CTPs). In the development of hPSC-derived CTPs, it is imperative to ensure that they do not form tumors after transplantation for safety reasons. Because cellular immortalization is a landmark of malignant transformation and a common feature of cancer cells, we aimed to develop an in vitro assay for detecting immortalized cells in CTPs. We employed retinal pigment epithelial (RPE) cells as a model of hPSC-derived products and identified a gene encoding slow skeletal muscle troponin T (TNNT1) as a novel marker of immortalized RPE cells by comprehensive microarray analysis. TNNT1 mRNA was commonly upregulated in immortalized RPE cells and human induced pluripotent stem cells (hiPSCs), which have self-renewal ability. Additionally, we demonstrated that TNNT1 mRNA expression is higher in several cancer tissues than in normal tissues. Furthermore, stable expression of TNNT1 in ARPE-19 cells affected actin filament organization and enhanced their migration ability. Finally, we established a simple and rapid qRT-PCR assay targeting TNNT1 transcripts that detected as low as 3% of ARPE-19 cells contained in normal primary RPE cells. Purified hiPSC-derived RPE cells showed TNNT1 expression levels below the detection limit determined with primary RPE cells. Our qRT-PCR method is expected to greatly contribute to process validation and quality control of CTPs.


Asunto(s)
Células Epiteliales/metabolismo , Expresión Génica , Epitelio Pigmentado de la Retina/metabolismo , Troponina T/genética , Actinas/metabolismo , Biomarcadores , Ciclo Celular/genética , Línea Celular Transformada , Movimiento Celular/genética , Perfilación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Multimerización de Proteína
15.
Sci Rep ; 6: 39383, 2016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27991560

RESUMEN

Structural cardiac remodeling, accompanying cytoskeletal reorganization of cardiac cells, is a major clinical outcome of diastolic heart failure. A highly local Ca2+ influx across the plasma membrane has been suggested to code signals to induce Rho GTPase-mediated fibrosis, but it is obscure how the heart specifically decodes the local Ca2+ influx as a cytoskeletal reorganizing signal under the conditions of the rhythmic Ca2+ handling required for pump function. We found that an inhibition of transient receptor potential canonical 3 (TRPC3) channel activity exhibited resistance to Rho-mediated maladaptive fibrosis in pressure-overloaded mouse hearts. Proteomic analysis revealed that microtubule-associated Rho guanine nucleotide exchange factor, GEF-H1, participates in TRPC3-mediated RhoA activation induced by mechanical stress in cardiomyocytes and transforming growth factor (TGF) ß stimulation in cardiac fibroblasts. We previously revealed that TRPC3 functionally interacts with microtubule-associated NADPH oxidase (Nox) 2, and inhibition of Nox2 attenuated mechanical stretch-induced GEF-H1 activation in cardiomyocytes. Finally, pharmacological TRPC3 inhibition significantly suppressed fibrotic responses in human cardiomyocytes and cardiac fibroblasts. These results strongly suggest that microtubule-localized TRPC3-GEF-H1 axis mediates fibrotic responses commonly in cardiac myocytes and fibroblasts induced by physico-chemical stimulation.


Asunto(s)
Fibrosis/metabolismo , Corazón/fisiología , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Masculino , Ratones , Microtúbulos/metabolismo , Miocitos Cardíacos/metabolismo , NADPH Oxidasas/metabolismo , Proteómica/métodos , Ratas , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
16.
Sci Rep ; 6: 37001, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27833156

RESUMEN

Reactive oxygen species (ROS) produced by NADPH oxidase 2 (Nox2) function as key mediators of mechanotransduction during both physiological adaptation to mechanical load and maladaptive remodeling of the heart. This is despite low levels of cardiac Nox2 expression. The mechanism underlying the transition from adaptation to maladaptation remains obscure, however. We demonstrate that transient receptor potential canonical 3 (TRPC3), a Ca2+-permeable channel, acts as a positive regulator of ROS (PRROS) in cardiomyocytes, and specifically regulates pressure overload-induced maladaptive cardiac remodeling in mice. TRPC3 physically interacts with Nox2 at specific C-terminal sites, thereby protecting Nox2 from proteasome-dependent degradation and amplifying Ca2+-dependent Nox2 activation through TRPC3-mediated background Ca2+ entry. Nox2 also stabilizes TRPC3 proteins to enhance TRPC3 channel activity. Expression of TRPC3 C-terminal polypeptide abolished TRPC3-regulated ROS production by disrupting TRPC3-Nox2 interaction, without affecting TRPC3-mediated Ca2+ influx. The novel TRPC3 function as a PRROS provides a mechanistic explanation for how diastolic Ca2+ influx specifically encodes signals to induce ROS-mediated maladaptive remodeling and offers new therapeutic possibilities.


Asunto(s)
Señalización del Calcio/fisiología , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPC/fisiología , Disfunción Ventricular Izquierda/metabolismo , Animales , Células CHO , Células Cultivadas , Cricetulus , Grupo Citocromo b/metabolismo , Diástole , Activación Enzimática , Células HEK293 , Humanos , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 2/metabolismo , NADPH Oxidasas/biosíntesis , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/metabolismo , Estrés Mecánico , Canales Catiónicos TRPC/deficiencia , Canal Catiónico TRPC6 , Remodelación Ventricular/fisiología
17.
Cell Metab ; 23(4): 663-74, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27050306

RESUMEN

Human pluripotent stem cells (hPSCs) are uniquely dependent on aerobic glycolysis to generate ATP. However, the importance of oxidative phosphorylation (OXPHOS) has not been elucidated. Detailed amino acid profiling has revealed that glutamine is indispensable for the survival of hPSCs. Under glucose- and glutamine-depleted conditions, hPSCs quickly died due to the loss of ATP. Metabolome analyses showed that hPSCs oxidized pyruvate poorly and that glutamine was the main energy source for OXPHOS. hPSCs were unable to utilize pyruvate-derived citrate due to negligible expression of aconitase 2 (ACO2) and isocitrate dehydrogenase 2/3 (IDH2/3) and high expression of ATP-citrate lyase. Cardiomyocytes with mature mitochondria were not able to survive without glucose and glutamine, although they were able to use lactate to synthesize pyruvate and glutamate. This distinguishing feature of hPSC metabolism allows preparation of clinical-grade cell sources free of undifferentiated hPSCs, which prevents tumor formation during stem cell therapy.


Asunto(s)
Glutamina/metabolismo , Células Madre Pluripotentes/citología , Adenosina Trifosfato/metabolismo , Línea Celular , Supervivencia Celular , Ciclo del Ácido Cítrico , Glucosa/metabolismo , Glucólisis , Humanos , Oxidación-Reducción , Células Madre Pluripotentes/metabolismo , Ácido Pirúvico/metabolismo
19.
Sci Rep ; 5: 17892, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26644244

RESUMEN

Contamination with tumorigenic cellular impurities is one of the most pressing concerns for human cell-processed therapeutic products (hCTPs). The soft agar colony formation (SACF) assay, which is a well-known in vitro assay for the detection of malignant transformed cells, is applicable for the quality assessment of hCTPs. Here we established an image-based screening system for the SACF assay using a high-content cell analyzer termed the digital SACF assay. Dual fluorescence staining of formed colonies and the dissolution of soft agar led to accurate detection of transformed cells with the imaging cytometer. Partitioning a cell sample into multiple wells of culture plates enabled digital readout of the presence of colonies and elevated the sensitivity for their detection. In practice, the digital SACF assay detected impurity levels as low as 0.00001% of the hCTPs, i.e. only one HeLa cell contained in 10,000,000 human mesenchymal stem cells, within 30 days. The digital SACF assay saves time, is more sensitive than in vivo tumorigenicity tests, and would be useful for the quality control of hCTPs in the manufacturing process.


Asunto(s)
Transformación Celular Neoplásica , Tratamiento Basado en Trasplante de Células y Tejidos , Ensayo de Tumor de Célula Madre , Tratamiento Basado en Trasplante de Células y Tejidos/efectos adversos , Tratamiento Basado en Trasplante de Células y Tejidos/normas , Células HeLa , Humanos , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Trasplante de Células Madre Mesenquimatosas/normas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Microscopía Fluorescente/métodos , Microscopía Fluorescente/normas , Sensibilidad y Especificidad , Ensayo de Tumor de Célula Madre/métodos
20.
Regen Ther ; 2: 17-23, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31245455

RESUMEN

Human pluripotent stem cells (hPSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), are leading candidate cells as raw materials for cell therapy products, because of their capacity for pluripotent differentiation and unlimited self-renewal. hPSC-derived products have already entered the scope of clinical application. However, the assessment and control of their tumorigenicity remains to be a critical challenge. Sensitive detection of the pluripotent cellular impurities is necessary for the safety and quality control of the hPSC-derived products. In the present study, we established a sensitive assay for detection of the residual undifferentiated hiPSCs in cardiomyocytes, using droplet digital PCR (ddPCR). The ddPCR method with a probe and primers for LIN28 significantly detected as low as 0.001% undifferentiated hiPSCs in primary cardiomyocytes, which is equivalent to the ratio of a single hiPSC to 1 × 105 cardiomyocytes. The ddPCR also showed that LIN28 expression is extremely low in human tissues including liver, heart, pancreas, kidney, spinal cord, corneal epithelium and lung. These results suggest that the ddPCR method targeting LIN28 transcripts is highly sensitive and useful for the quality assessment of various cell therapy products derived from hPSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA