Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sensors (Basel) ; 24(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39124007

RESUMEN

Tremor, defined as an "involuntary, rhythmic, oscillatory movement of a body part", is a key feature of many neurological conditions including Parkinson's disease and essential tremor. Clinical assessment continues to be performed by visual observation with quantification on clinical scales. Methodologies for objectively quantifying tremor are promising but remain non-standardized across centers. Our center performs full-body behavioral testing with 3D motion capture for clinical and research purposes in patients with Parkinson's disease, essential tremor, and other conditions. The objective of this study was to assess the ability of several candidate processing pipelines to identify the presence or absence of tremor in kinematic data from patients with confirmed movement disorders and compare them to expert ratings from movement disorders specialists. We curated a database of 2272 separate kinematic data recordings from our center, each of which was contemporaneously annotated as tremor present or absent by a movement physician. We compared the ability of six separate processing pipelines to recreate clinician ratings based on F1 score, in addition to accuracy, precision, and recall. The performance across algorithms was generally comparable. The average F1 score was 0.84±0.02 (mean ± SD; range 0.81-0.87). The second highest performing algorithm (cross-validated F1=0.87) was a hybrid that used engineered features adapted from an algorithm in longstanding clinical use with a modern Support Vector Machine classifier. Taken together, our results suggest the potential to update legacy clinical decision support systems to incorporate modern machine learning classifiers to create better-performing tools.


Asunto(s)
Algoritmos , Trastornos del Movimiento , Temblor , Humanos , Temblor/diagnóstico , Temblor/fisiopatología , Trastornos del Movimiento/diagnóstico , Trastornos del Movimiento/fisiopatología , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/fisiopatología , Fenómenos Biomecánicos , Temblor Esencial/diagnóstico , Temblor Esencial/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Anciano
2.
Sensors (Basel) ; 23(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37837160

RESUMEN

Characterizing motor subtypes of Parkinson's disease (PD) is an important aspect of clinical care that is useful for prognosis and medical management. Although all PD cases involve the loss of dopaminergic neurons in the brain, individual cases may present with different combinations of motor signs, which may indicate differences in underlying pathology and potential response to treatment. However, the conventional method for distinguishing PD motor subtypes involves resource-intensive physical examination by a movement disorders specialist. Moreover, the standardized rating scales for PD rely on subjective observation, which requires specialized training and unavoidable inter-rater variability. In this work, we propose a system that uses machine learning models to automatically and objectively identify some PD motor subtypes, specifically Tremor-Dominant (TD) and Postural Instability and Gait Difficulty (PIGD), from 3D kinematic data recorded during walking tasks for patients with PD (MDS-UPDRS-III Score, 34.7 ± 10.5, average disease duration 7.5 ± 4.5 years). This study demonstrates a machine learning model utilizing kinematic data that identifies PD motor subtypes with a 79.6% F1 score (N = 55 patients with parkinsonism). This significantly outperformed a comparison model using classification based on gait features (19.8% F1 score). Variants of our model trained to individual patients achieved a 95.4% F1 score. This analysis revealed that both temporal, spectral, and statistical features from lower body movements are helpful in distinguishing motor subtypes. Automatically assessing PD motor subtypes simply from walking may reduce the time and resources required from specialists, thereby improving patient care for PD treatments. Furthermore, this system can provide objective assessments to track the changes in PD motor subtypes over time to implement and modify appropriate treatment plans for individual patients as needed.


Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , Temblor/diagnóstico , Fenómenos Biomecánicos , Marcha , Encéfalo/patología , Trastornos Neurológicos de la Marcha/diagnóstico , Equilibrio Postural/fisiología
3.
Sensors (Basel) ; 23(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36850363

RESUMEN

Freezing of gait (FOG) is a poorly understood heterogeneous gait disorder seen in patients with parkinsonism which contributes to significant morbidity and social isolation. FOG is currently measured with scales that are typically performed by movement disorders specialists (i.e., MDS-UPDRS), or through patient completed questionnaires (N-FOG-Q) both of which are inadequate in addressing the heterogeneous nature of the disorder and are unsuitable for use in clinical trials The purpose of this study was to devise a method to measure FOG objectively, hence improving our ability to identify it and accurately evaluate new therapies. A major innovation of our study is that it is the first study of its kind that uses the largest sample size (>30 h, N = 57) in order to apply explainable, multi-task deep learning models for quantifying FOG over the course of the medication cycle and at varying levels of parkinsonism severity. We trained interpretable deep learning models with multi-task learning to simultaneously score FOG (cross-validated F1 score 97.6%), identify medication state (OFF vs. ON levodopa; cross-validated F1 score 96.8%), and measure total PD severity (MDS-UPDRS-III score prediction error ≤ 2.7 points) using kinematic data of a well-characterized sample of N = 57 patients during levodopa challenge tests. The proposed model was able to explain how kinematic movements are associated with each FOG severity level that were highly consistent with the features, in which movement disorders specialists are trained to identify as characteristics of freezing. Overall, we demonstrate that deep learning models' capability to capture complex movement patterns in kinematic data can automatically and objectively score FOG with high accuracy. These models have the potential to discover novel kinematic biomarkers for FOG that can be used for hypothesis generation and potentially as clinical trial outcome measures.


Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Humanos , Trastornos Neurológicos de la Marcha/diagnóstico , Levodopa/uso terapéutico , Enfermedad de Parkinson/diagnóstico , Marcha , Movimiento
4.
Sensors (Basel) ; 23(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067890

RESUMEN

Spatial navigation patterns in indoor space usage can reveal important cues about the cognitive health of participants. In this work, we present a low-cost, scalable, open-source edge computing system using Bluetooth low energy (BLE) beacons for tracking indoor movements in a large, 1700 m2 facility used to carry out therapeutic activities for participants with mild cognitive impairment (MCI). The facility is instrumented with 39 edge computing systems, along with an on-premise fog server. The participants carry a BLE beacon, in which BLE signals are received and analyzed by the edge computing systems. Edge computing systems are sparsely distributed in the wide, complex indoor space, challenging the standard trilateration technique for localizing subjects, which assumes a dense installation of BLE beacons. We propose a graph trilateration approach that considers the temporal density of hits from the BLE beacon to surrounding edge devices to handle the inconsistent coverage of edge devices. This proposed method helps us tackle the varying signal strength, which leads to intermittent detection of beacons. The proposed method can pinpoint the positions of multiple participants with an average error of 4.4 m and over 85% accuracy in region-level localization across the entire study area. Our experimental results, evaluated in a clinical environment, suggest that an ordinary medical facility can be transformed into a smart space that enables automatic assessment of individuals' movements, which may reflect health status or response to treatment.


Asunto(s)
Nube Computacional , Navegación Espacial , Humanos , Tecnología Inalámbrica , Estado de Salud , Movimiento , Navegación Espacial/fisiología
5.
Sensors (Basel) ; 21(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34960431

RESUMEN

Supervised training of human activity recognition (HAR) systems based on body-worn inertial measurement units (IMUs) is often constrained by the typically rather small amounts of labeled sample data. Systems like IMUTube have been introduced that employ cross-modality transfer approaches to convert videos of activities of interest into virtual IMU data. We demonstrate for the first time how such large-scale virtual IMU datasets can be used to train HAR systems that are substantially more complex than the state-of-the-art. Complexity is thereby represented by the number of model parameters that can be trained robustly. Our models contain components that are dedicated to capture the essentials of IMU data as they are of relevance for activity recognition, which increased the number of trainable parameters by a factor of 1100 compared to state-of-the-art model architectures. We evaluate the new model architecture on the challenging task of analyzing free-weight gym exercises, specifically on classifying 13 dumbbell execises. We have collected around 41 h of virtual IMU data using IMUTube from exercise videos available from YouTube. The proposed model is trained with the large amount of virtual IMU data and calibrated with a mere 36 min of real IMU data. The trained model was evaluated on a real IMU dataset and we demonstrate the substantial performance improvements of 20% absolute F1 score compared to the state-of-the-art convolutional models in HAR.


Asunto(s)
Redes Neurales de la Computación , Dispositivos Electrónicos Vestibles , Actividades Humanas , Humanos , Reconocimiento en Psicología
6.
Artículo en Inglés | MEDLINE | ID: mdl-38406564

RESUMEN

Social interaction behaviors change as a result of both physical and psychiatric problems, and it is important to identify subtle changes in group activity engagements for monitoring the mental health of patients in clinics. This work proposes a system to identify when and where group formations occur in an approximately 1700 m2 therapeutic built environment using a distributed edge-computing camera network. The proposed method can localize group formations when provided with noisy positions and orientations of individuals, estimated from sparsely distributed multiview cameras, which run a lightweight multiperson 2-D pose detection model. Our group identification method demonstrated an F1 score of up to 90% with a mean absolute error of 1.25 m for group localization on our benchmark dataset. The dataset consisted of seven subjects walking, sitting, and conversing for 35 min in groups of various sizes ranging from 2 to 7 subjects. The proposed system is low-cost and scalable to any ordinary building to transform the indoor space into a smart environment using edge computing systems. We expect the proposed system to enhance existing therapeutic units for passively monitoring the social behaviors of patients when implementing real-time interventions.

7.
PLOS Digit Health ; 3(7): e0000413, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39046989

RESUMEN

Research on automated mental health assessment tools has been growing in recent years, often aiming to address the subjectivity and bias that existed in the current clinical practice of the psychiatric evaluation process. Despite the substantial health and economic ramifications, the potential unfairness of those automated tools was understudied and required more attention. In this work, we systematically evaluated the fairness level in a multimodal remote mental health dataset and an assessment system, where we compared the fairness level in race, gender, education level, and age. Demographic parity ratio (DPR) and equalized odds ratio (EOR) of classifiers using different modalities were compared, along with the F1 scores in different demographic groups. Post-training classifier threshold optimization was employed to mitigate the unfairness. No statistically significant unfairness was found in the composition of the dataset. Varying degrees of unfairness were identified among modalities, with no single modality consistently demonstrating better fairness across all demographic variables. Post-training mitigation effectively improved both DPR and EOR metrics at the expense of a decrease in F1 scores. Addressing and mitigating unfairness in these automated tools are essential steps in fostering trust among clinicians, gaining deeper insights into their use cases, and facilitating their appropriate utilization.

8.
IEEE J Biomed Health Inform ; 28(3): 1680-1691, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38198249

RESUMEN

OBJECTIVE: Psychiatric evaluation suffers from subjectivity and bias, and is hard to scale due to intensive professional training requirements. In this work, we investigated whether behavioral and physiological signals, extracted from tele-video interviews, differ in individuals with psychiatric disorders. METHODS: Temporal variations in facial expression, vocal expression, linguistic expression, and cardiovascular modulation were extracted from simultaneously recorded audio and video of remote interviews. Averages, standard deviations, and Markovian process-derived statistics of these features were computed from 73 subjects. Four binary classification tasks were defined: detecting 1) any clinically-diagnosed psychiatric disorder, 2) major depressive disorder, 3) self-rated depression, and 4) self-rated anxiety. Each modality was evaluated individually and in combination. RESULTS: Statistically significant feature differences were found between psychiatric and control subjects. Correlations were found between features and self-rated depression and anxiety scores. Heart rate dynamics provided the best unimodal performance with areas under the receiver-operator curve (AUROCs) of 0.68-0.75 (depending on the classification task). Combining multiple modalities provided AUROCs of 0.72-0.82. CONCLUSION: Multimodal features extracted from remote interviews revealed informative characteristics of clinically diagnosed and self-rated mental health status. SIGNIFICANCE: The proposed multimodal approach has the potential to facilitate scalable, remote, and low-cost assessment for low-burden automated mental health services.


Asunto(s)
Trastorno Depresivo Mayor , Salud Mental , Humanos , Trastornos de Ansiedad , Lingüística , Biomarcadores
9.
medRxiv ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37745610

RESUMEN

Objective: The current clinical practice of psychiatric evaluation suffers from subjectivity and bias, and requires highly skilled professionals that are often unavailable or unaffordable. Objective digital biomarkers have shown the potential to address these issues. In this work, we investigated whether behavioral and physiological signals, extracted from remote interviews, provided complimentary information for assessing psychiatric disorders. Methods: Time series of multimodal features were derived from four conceptual modes: facial expression, vocal expression, linguistic expression, and cardiovascular modulation. The features were extracted from simultaneously recorded audio and video of remote interviews using task-specific and foundation models. Averages, standard deviations, and hidden Markov model-derived statistics of these features were computed from 73 subjects. Four binary classification tasks were defined: detecting 1) any clinically-diagnosed psychiatric disorder, 2) major depressive disorder, 3) self-rated depression, and 4) self-rated anxiety. Each modality was evaluated individually and in combination. Results: Statistically significant feature differences were found between controls and subjects with mental health conditions. Correlations were found between features and self-rated depression and anxiety scores. Visual heart rate dynamics achieved the best unimodal performance with areas under the receiver-operator curve (AUROCs) of 0.68-0.75 (depending on the classification task). Combining multiple modalities achieved AUROCs of 0.72-0.82. Features from task-specific models outperformed features from foundation models. Conclusion: Multimodal features extracted from remote interviews revealed informative characteristics of clinically diagnosed and self-rated mental health status. Significance: The proposed multimodal approach has the potential to facilitate objective, remote, and low-cost assessment for low-burden automated mental health services.

10.
medRxiv ; 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36711809

RESUMEN

Freezing of gait (FOG) is a poorly understood heterogeneous gait disorder seen in patients with parkinsonism which contributes to significant morbidity and social isolation. FOG is currently measured with scales that are typically performed by movement disorders specialists (ie. MDS-UPDRS), or through patient completed questionnaires (N-FOG-Q) both of which are inadequate in addressing the heterogeneous nature of the disorder and are unsuitable for use in clinical trials The purpose of this study was to devise a method to measure FOG objectively, hence improving our ability to identify it and accurately evaluate new therapies. We trained interpretable deep learning models with multi-task learning to simultaneously score FOG (cross-validated F1 score 97.6%), identify medication state (OFF vs. ON levodopa; cross-validated F1 score 96.8%), and measure total PD severity (MDS-UPDRS-III score prediction error ≤ 2.7 points) using kinematic data of a well-characterized sample of N=57 patients during levodopa challenge tests. The proposed model was able to identify kinematic features associated with each FOG severity level that were highly consistent with the features that movement disorders specialists are trained to identify as characteristic of freezing. In this work, we demonstrate that deep learning models' capability to capture complex movement patterns in kinematic data can automatically and objectively score FOG with high accuracy. These models have the potential to discover novel kinematic biomarkers for FOG that can be used for hypothesis generation and potentially as clinical trial outcome measures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA