Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Chem Inf Model ; 61(7): 3667-3680, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34156843

RESUMEN

The glucocorticoid receptor (GR) is a nuclear receptor that controls critical biological processes by regulating the transcription of specific genes. There is a known allosteric cross-talk between the ligand and coregulator binding sites within the GR ligand-binding domain that is crucial for the control of the functional response. However, the molecular mechanisms underlying such an allosteric control remain elusive. Here, molecular dynamics (MD) simulations, bioinformatic analysis, and biophysical measurements are integrated to capture the structural and dynamic features of the allosteric cross-talk within the GR. We identified a network of evolutionarily conserved residues that enables the allosteric signal transduction, in agreement with experimental data. MD simulations clarify how such a network is dynamically interconnected and offer a mechanistic explanation of how different peptides affect the intensity of the allosteric signal. This study provides useful insights to elucidate the GR allosteric regulation, ultimately providing a foundation for designing novel drugs.


Asunto(s)
Péptidos , Receptores de Glucocorticoides , Regulación Alostérica , Sitio Alostérico , Sitios de Unión , Humanos , Ligandos , Unión Proteica , Receptores de Glucocorticoides/metabolismo
2.
Int J Mol Sci ; 19(2)2018 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-29401640

RESUMEN

DNA gyrases are enzymes that control the topology of DNA in bacteria cells. This is a vital function for bacteria. For this reason, DNA gyrases are targeted by widely used antibiotics such as quinolones. Recently, structural and biochemical investigations identified a new class of DNA gyrase inhibitors called NBTIs (i.e., novel bacterial topoisomerase inhibitors). NBTIs are particularly promising because they are active against multi-drug resistant bacteria, an alarming clinical issue. Structural data recently demonstrated that these NBTIs bind tightly to a newly identified pocket at the dimer interface of the DNA-protein complex. In the present study, we used molecular dynamics (MD) simulations and docking calculations to shed new light on the binding of NBTIs to this site. Interestingly, our MD simulations demonstrate the intrinsic flexibility of this binding site, which allows the pocket to adapt its conformation and form optimal interactions with the ligand. In particular, we examined two ligands, AM8085 and AM8191, which induced a repositioning of a key aspartate (Asp83B), whose side chain can rotate within the binding site. The conformational rearrangement of Asp83B allows the formation of a newly identified H-bond interaction with an NH on the bound NBTI, which seems important for the binding of NBTIs having such functionality. We validated these findings through docking calculations using an extended set of cognate oxabicyclooctane-linked NBTIs derivatives (~150, in total), screened against multiple target conformations. The newly identified H-bond interaction significantly improves the docking enrichment. These insights could be helpful for future virtual screening campaigns against DNA gyrase.


Asunto(s)
Antibacterianos/química , Ácido Aspártico/química , Compuestos Bicíclicos con Puentes/química , Girasa de ADN/química , Subunidades de Proteína/química , Staphylococcus aureus/química , Inhibidores de Topoisomerasa/química , Secuencias de Aminoácidos , Antibacterianos/metabolismo , Ácido Aspártico/metabolismo , Sitios de Unión , Compuestos Bicíclicos con Puentes/metabolismo , Girasa de ADN/genética , Girasa de ADN/metabolismo , Escherichia coli/química , Escherichia coli/enzimología , Expresión Génica , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Staphylococcus aureus/enzimología , Inhibidores de Topoisomerasa/metabolismo
3.
Chem Sci ; 14(25): 7057-7067, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37389247

RESUMEN

Understanding allosteric regulation in biomolecules is of great interest to pharmaceutical research and computational methods emerged during the last decades to characterize allosteric coupling. However, the prediction of allosteric sites in a protein structure remains a challenging task. Here, we integrate local binding site information, coevolutionary information, and information on dynamic allostery into a structure-based three-parameter model to identify potentially hidden allosteric sites in ensembles of protein structures with orthosteric ligands. When tested on five allosteric proteins (LFA-1, p38-α, GR, MAT2A, and BCKDK), the model successfully ranked all known allosteric pockets in the top three positions. Finally, we identified a novel druggable site in MAT2A confirmed by X-ray crystallography and SPR and a hitherto unknown druggable allosteric site in BCKDK validated by biochemical and X-ray crystallography analyses. Our model can be applied in drug discovery to identify allosteric pockets.

4.
J Med Chem ; 65(13): 8998-9010, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35771181

RESUMEN

Prion diseases are a group of neurodegenerative disorders characterized by the accumulation of misfolded prion protein (called PrPSc). Although conversion of the cellular prion protein (PrPC) to PrPSc is still not completely understood, most of the therapies developed until now are based on blocking this process. Here, we propose a new drug strategy aimed at clearing prions without any direct interaction with neither PrPC nor PrPSc. Starting from the recent discovery of SERPINA3/SerpinA3n upregulation during prion diseases, we have identified a small molecule, named compound 5 (ARN1468), inhibiting the function of these serpins and effectively reducing prion load in chronically infected cells. Although the low bioavailability of this compound does not allow in vivo studies in prion-infected mice, our strategy emerges as a novel and effective approach to the treatment of prion disease.


Asunto(s)
Enfermedades por Prión , Priones , Animales , Ratones , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/metabolismo , Proteínas Priónicas/metabolismo , Priones/metabolismo
5.
J Med Chem ; 65(24): 16818-16828, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36484727

RESUMEN

The ubiquitously expressed glucocorticoid receptor (GR) is a nuclear receptor that controls a broad range of biological processes and is activated by steroidal glucocorticoids such as hydrocortisone or dexamethasone. Glucocorticoids are used to treat a wide variety of conditions, from inflammation to cancer but suffer from a range of side effects that motivate the search for safer GR modulators. GR is also regulated outside the steroid-binding site through protein-protein interactions (PPIs) with 14-3-3 adapter proteins. Manipulation of these PPIs will provide insights into noncanonical GR signaling as well as a new level of control over GR activity. We report the first molecular glues that selectively stabilize the 14-3-3/GR PPI using the related nuclear receptor estrogen receptor α (ERα) as a selectivity target to drive design. These 14-3-3/GR PPI stabilizers can be used to dissect noncanonical GR signaling and enable the development of novel atypical GR modulators.


Asunto(s)
Glucocorticoides , Receptores de Glucocorticoides , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Proteínas 14-3-3/metabolismo , Regulación de la Expresión Génica , Sitios de Unión , Esteroides , Dexametasona
6.
Cell Rep ; 39(1): 110641, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385746

RESUMEN

CDC42 family GTPases (RHOJ, RHOQ, CDC42) are upregulated but rarely mutated in cancer and control both the ability of tumor cells to invade surrounding tissues and the ability of endothelial cells to vascularize tumors. Here, we use computer-aided drug design to discover a chemical entity (ARN22089) that has broad activity against a panel of cancer cell lines, inhibits S6 phosphorylation and MAPK activation, activates pro-inflammatory and apoptotic signaling, and blocks tumor growth and angiogenesis in 3D vascularized microtumor models (VMT) in vitro. Additionally, ARN22089 has a favorable pharmacokinetic profile and can inhibit the growth of BRAF mutant mouse melanomas and patient-derived xenografts in vivo. ARN22089 selectively blocks CDC42 effector interactions without affecting the binding between closely related GTPases and their downstream effectors. Taken together, we identify a class of therapeutic agents that influence tumor growth by modulating CDC42 signaling in both the tumor cell and its microenvironment.


Asunto(s)
Células Endoteliales , Neoplasias , Animales , Células Endoteliales/metabolismo , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Neovascularización Patológica , Transducción de Señal , Microambiente Tumoral , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Unión al GTP rho/metabolismo
7.
Chem ; 6(8): 2073-2096, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32818158

RESUMEN

Aberrant expression ratio of Cl- transporters, NKCC1 and KCC2, is implicated in several brain conditions. NKCC1 inhibition by the FDA-approved diuretic drug, bumetanide, rescues core symptoms in rodent models and/or clinical trials with patients. However, bumetanide has a strong diuretic effect due to inhibition of the kidney Cl- transporter NKCC2, creating critical drug compliance issues and health concerns. Here, we report the discovery of a new chemical class of selective NKCC1 inhibitors and the lead drug candidate ARN23746. ARN23746 restores the physiological intracellular Cl- in murine Down syndrome neuronal cultures, has excellent solubility and metabolic stability, and displays no issues with off-target activity in vitro. ARN23746 recovers core symptoms in mouse models of Down syndrome and autism, with no diuretic effect, nor overt toxicity upon chronic treatment in adulthood. ARN23746 is ready for advanced preclinical/manufacturing studies toward the first sustainable therapeutics for the neurological conditions characterized by impaired Cl- homeostasis.

8.
Nat Commun ; 11(1): 2319, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385234

RESUMEN

Bruton's tyrosine kinase (Btk) is critical for B-cell maturation and activation. Btk loss-of-function mutations cause human X-linked agammaglobulinemia (XLA). In contrast, Btk signaling sustains growth of several B-cell neoplasms which may be treated with tyrosine kinase inhibitors (TKIs). Here, we uncovered the structural mechanism by which certain XLA mutations in the SH2 domain strongly perturb Btk activation. Using a combination of molecular dynamics (MD) simulations and small-angle X-ray scattering (SAXS), we discovered an allosteric interface between the SH2 and kinase domain required for Btk activation and to which multiple XLA mutations map. As allosteric interactions provide unique targeting opportunities, we developed an engineered repebody protein binding to the SH2 domain and able to disrupt the SH2-kinase interaction. The repebody prevents activation of wild-type and TKI-resistant Btk, inhibiting Btk-dependent signaling and proliferation of malignant B-cells. Therefore, the SH2-kinase interface is critical for Btk activation and a targetable site for allosteric inhibition.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/metabolismo , Cristalografía por Rayos X/métodos , Linfoma/metabolismo , Agammaglobulinemia Tirosina Quinasa/genética , Western Blotting , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Dicroismo Circular , Citometría de Flujo , Células HEK293 , Humanos , Immunoblotting , Inmunoprecipitación , Linfoma/genética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación/genética
10.
ACS Cent Sci ; 3(9): 949-960, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28979936

RESUMEN

The detection and characterization of binding pockets and allosteric communication in proteins is crucial for studying biological regulation and performing drug design. Nowadays, ever-longer molecular dynamics (MD) simulations are routinely used to investigate the spatiotemporal evolution of proteins. Yet, there is no computational tool that can automatically detect all the pockets and potential allosteric communication networks along these extended MD simulations. Here, we use a novel and fully automated algorithm that examines pocket formation, dynamics, and allosteric communication embedded in microsecond-long MD simulations of three pharmaceutically relevant proteins, namely, PNP, A2A, and Abl kinase. This dynamic analysis uses pocket crosstalk, defined as the temporal exchange of atoms between adjacent pockets, along the MD trajectories as a fingerprint of hidden allosteric communication networks. Importantly, this study indicates that dynamic pocket crosstalk analysis provides new mechanistic understandings on allosteric communication networks, enriching the available experimental data. Thus, our results suggest the prospective use of this unprecedented dynamic analysis to characterize transient binding pockets for structure-based drug design.

11.
J Med Chem ; 60(13): 5800-5815, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28603987

RESUMEN

Acid ceramidase (AC) hydrolyzes ceramides, which are central lipid messengers for metabolism and signaling of sphingolipids. A growing body of evidence links deregulation of sphingolipids to several diseases, including cancer. Indeed, AC expression is abnormally high in melanoma cells. AC inhibition may thus be key to treating malignant melanoma. Here, we have used a systematic scaffold exploration to design a general pharmacophore for AC inhibition. This pharmacophore comprises a 6 + 5 fused ring heterocycle linked to an aliphatic substituent via a urea moiety. We have thus identified the novel benzimidazole derivatives 10, 21, 27, and 30, which are highly potent AC inhibitors. Their chemical and metabolic stabilities are comparable or superior to those of previously reported AC inhibitors. Moreover, they are potent against endogenous AC in intact melanoma cells. These novel inhibitors merit further characterization and can serve as a promising starting point for the discovery of new antimelanoma therapeutics.


Asunto(s)
Ceramidasa Ácida/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/farmacología , Bencimidazoles/química , Bencimidazoles/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ceramidasa Ácida/metabolismo , Animales , Antineoplásicos/sangre , Bencimidazoles/sangre , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Estabilidad de Medicamentos , Inhibidores Enzimáticos/sangre , Células HEK293 , Humanos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Ratones
13.
J Chem Theory Comput ; 12(11): 5563-5574, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27682200

RESUMEN

A number of structural factors modulate the activity of Abelson (Abl) tyrosine kinase, whose deregulation is often related to oncogenic processes. First, only the open conformation of the Abl kinase domain's activation loop (A-loop) favors ATP binding to the catalytic cleft. In this regard, the trans-autophosphorylation of the Y412 residue, which is located along the A-loop, favors the stability of the open conformation, in turn enhancing Abl activity. Another key factor for full Abl activity is the formation of active conformations of the catalytic DFG motif in the Abl kinase domain. Furthermore, binding of the SH2 domain to the N-lobe of the Abl kinase was recently demonstrated to have a long-range allosteric effect on the stabilization of the A-loop open state. Intriguingly, these distinct structural factors imply a complex signal transmission network for controlling the A-loop's flexibility and conformational preference for optimal Abl function. However, the exact dynamical features of this signal transmission network structure remain unclear. Here, we report on microsecond-long molecular dynamics coupled with enhanced sampling simulations of multiple Abl model systems, in the presence or absence of the SH2 domain and with the DFG motif flipped in two ways (in or out conformation). Through comparative analysis, our simulations augment the interpretation of the existing Abl experimental data, revealing a dynamical network of interactions that interconnect SH2 domain binding with A-loop plasticity and Y412 autophosphorylation in Abl. This signaling network engages the DFG motif and, importantly, other conserved structural elements of the kinase domain, namely, the EPK-ELK H-bond network and the HRD motif. Our results show that the signal propagation for modulating the A-loop spatial localization is highly dependent on the HRD motif conformation, which thus acts as the central hub of this (allosteric) signaling network controlling Abl activation and function.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas Proto-Oncogénicas c-abl/química , Transducción de Señal/fisiología , Secuencias de Aminoácidos , Enlace de Hidrógeno , Fosforilación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-abl/metabolismo , Dominios Homologos src
14.
J Med Chem ; 58(11): 4590-609, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-25923950

RESUMEN

Fyn is a member of the Src-family of nonreceptor protein-tyrosine kinases. Its abnormal activity has been shown to be related to various human cancers as well as to severe pathologies, such as Alzheimer's and Parkinson's diseases. Herein, a structure-based drug design protocol was employed aimed at identifying novel Fyn inhibitors. Two hits from commercial sources (1, 2) were found active against Fyn with K(i) of about 2 µM, while derivative 4a, derived from our internal library, showed a K(i) of 0.9 µM. A hit-to-lead optimization effort was then initiated on derivative 4a to improve its potency. Slightly modifications rapidly determine an increase in the binding affinity, with the best inhibitors 4c and 4d having K(i)s of 70 and 95 nM, respectively. Both compounds were found able to inhibit the phosphorylation of the protein Tau in an Alzheimer's model cell line and showed antiproliferative activities against different cancer cell lines.


Asunto(s)
Adenosina Trifosfato/metabolismo , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-fyn/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinas/farmacología , Tauopatías/tratamiento farmacológico , Antineoplásicos/química , Sitios de Unión , Proliferación Celular/efectos de los fármacos , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Neoplasias/enzimología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Pirazoles/química , Pirimidinas/química , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Tauopatías/enzimología , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA