RESUMEN
Widespread phytochrome photoreceptors use photoisomerization of linear tetrapyrrole (bilin) chromophores to measure the ratio of red to far-red light. Cyanobacteria also contain distantly related cyanobacteriochrome (CBCR) proteins that share the bilin-binding GAF domain of phytochromes but sense other colors of light. CBCR photocycles are extremely diverse, ranging from the near-UV to the near-IR. Photoisomerization of the bilin triggers photoconversion of the CBCR input, thereby modulating the biochemical signaling state of output domains such as histidine kinase bidomains that can interface with cellular signal transduction pathways. CBCRs thus can regulate several aspects of cyanobacterial photobiology, including phototaxis, metabolism of cyclic nucleotide second messengers, and optimization of the cyanobacterial light-harvesting apparatus. This review examines spectral tuning, photoconversion, and photobiology of CBCRs and recent developments in understanding their evolution and in applying them in synthetic biology.
RESUMEN
Optogenetic actuators have revolutionized the resolution at which biological processes can be controlled. In plants, deployment of optogenetics is challenging due to the need for these light-responsive systems to function in the context of horticultural light environments. Furthermore, many available optogenetic actuators are based on plant photoreceptors that might crosstalk with endogenous signaling processes, while others depend on exogenously supplied cofactors. To overcome such challenges, we have developed Highlighter, a synthetic, light-gated gene expression system tailored for in planta function. Highlighter is based on the photoswitchable CcaS-CcaR system from cyanobacteria and is repurposed for plants as a fully genetically encoded system. Analysis of a re-engineered CcaS in Escherichia coli demonstrated green/red photoswitching with phytochromobilin, a chromophore endogenous to plants, but also revealed a blue light response likely derived from a flavin-binding LOV-like domain. We deployed Highlighter in transiently transformed Nicotiana benthamiana for optogenetic control of fluorescent protein expression. Using light to guide differential fluorescent protein expression in nuclei of neighboring cells, we demonstrate unprecedented spatiotemporal control of target gene expression. We implemented the system to demonstrate optogenetic control over plant immunity and pigment production through modulation of the spectral composition of broadband visible (white) light. Highlighter is a step forward for optogenetics in plants and a technology for high-resolution gene induction that will advance fundamental plant biology and provide new opportunities for crop improvement.
Asunto(s)
Aracnodactilia , Optogenética , Nicotiana/genética , Escherichia coli/genética , Expresión GénicaRESUMEN
Terrestrial ecosystems and human societies depend on oxygenic photosynthesis, which began to reshape our atmosphere approximately 2.5 billion years ago. The earliest known organisms carrying out oxygenic photosynthesis are the cyanobacteria, which use large complexes of phycobiliproteins as light-harvesting antennae. Phycobiliproteins rely on phycocyanobilin (PCB), a linear tetrapyrrole (bilin) chromophore, as the light-harvesting pigment that transfers absorbed light energy from phycobilisomes to the chlorophyll-based photosynthetic apparatus. Cyanobacteria synthesize PCB from heme in two steps: A heme oxygenase converts heme into biliverdin IXα (BV), and the ferredoxin-dependent bilin reductase (FDBR) PcyA then converts BV into PCB. In the current work, we examine the origins of this pathway. We demonstrate that PcyA evolved from pre-PcyA proteins found in nonphotosynthetic bacteria and that pre-PcyA enzymes are active FDBRs that do not yield PCB. Pre-PcyA genes are associated with two gene clusters. Both clusters encode bilin-binding globin proteins, phycobiliprotein paralogs that we designate as BBAGs (bilin biosynthesis-associated globins). Some cyanobacteria also contain one such gene cluster, including a BBAG, two V4R proteins, and an iron-sulfur protein. Phylogenetic analysis shows that this cluster is descended from those associated with pre-PcyA proteins and that light-harvesting phycobiliproteins are also descended from BBAGs found in other bacteria. We propose that PcyA and phycobiliproteins originated in heterotrophic, nonphotosynthetic bacteria and were subsequently acquired by cyanobacteria.
Asunto(s)
Cianobacterias , Ficobiliproteínas , Humanos , Filogenia , Ficobiliproteínas/metabolismo , Oxidorreductasas/metabolismo , Ecosistema , Pigmentos Biliares/química , Cianobacterias/químicaRESUMEN
The red and far-red light photoreceptor phytochrome B (phyB) transmits light signals following cytosol-to-nuclear translocation to regulate transcriptional networks therein. This necessitates changes in protein-protein interactions of phyB in the cytosol, about which little is presently known. Via introduction of a nucleus-excluding G767R mutation into the dominant, constitutively active phyBY276H (YHB) allele, we explore the functional consequences of expressing a cytosol-localized YHBG767R variant in transgenic Arabidopsis seedlings. We show that YHBG767R elicits selective constitutive photomorphogenic phenotypes in dark-grown phyABCDE null mutants, wild type and other phy-deficient genotypes. These responses include light-independent apical hook opening, cotyledon unfolding, seed germination and agravitropic hypocotyl growth with minimal suppression of hypocotyl elongation. Such phenotypes correlate with reduced PIF3 levels, which implicates cytosolic targeting of PIF3 turnover or PIF3 translational inhibition by YHBG767R. However, as expected for a cytoplasm-tethered phyB, YHBG767R elicits reduced light-mediated signaling activity compared with similarly expressed wild-type phyB in phyABCDE mutant backgrounds. YHBG767R also interferes with wild-type phyB light signaling, presumably by formation of cytosol-retained and/or otherwise inactivated heterodimers. Our results suggest that cytosolic interactions with PIFs play an important role in phyB signaling even under physiological conditions.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citosol , Fitocromo B , Transducción de Señal , Fitocromo B/metabolismo , Fitocromo B/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Citosol/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/metabolismo , Hipocótilo/efectos de la radiación , Plantas Modificadas Genéticamente , Luz , Mutación , Regulación de la Expresión Génica de las Plantas , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Plantones/metabolismo , FenotipoRESUMEN
Cyanobacteriochromes (CBCRs) are small, linear tetrapyrrole (bilin)-binding photoreceptors in the phytochrome superfamily that regulate diverse light-mediated adaptive processes in cyanobacteria. More spectrally diverse than canonical red/far-red-sensing phytochromes, CBCRs were thought to be restricted to sensing visible and near UV light until recently when several subfamilies with far-red-sensing representatives (frCBCRs) were discovered. Two of these frCBCRs subfamilies have been shown to incorporate bilin precursors with larger pi-conjugated chromophores, while the third frCBCR subfamily uses the same phycocyanobilin precursor found in the bulk of the known CBCRs. To elucidate the molecular basis of far-red light perception by this third frCBCR subfamily, we determined the crystal structure of the far-red-absorbing dark state of one such frCBCR Anacy_2551g3 from Anabaena cylindrica PCC 7122 which exhibits a reversible far-red/orange photocycle. Determined by room temperature serial crystallography and cryocrystallography, the refined 2.7-Å structure reveals an unusual all-Z,syn configuration of the phycocyanobilin (PCB) chromophore that is considerably less extended than those of previously characterized red-light sensors in the phytochrome superfamily. Based on structural and spectroscopic comparisons with other bilin-binding proteins together with site-directed mutagenesis data, our studies reveal protein-chromophore interactions that are critical for the atypical bathochromic shift. Based on these analyses, we propose that far-red absorption in Anacy_2551g3 is the result of the additive effect of two distinct red-shift mechanisms involving cationic bilin lactim tautomers stabilized by a constrained all-Z,syn conformation and specific interactions with a highly conserved anionic residue.
Asunto(s)
Pigmentos Biliares/química , Pigmentos Biliares/metabolismo , Cianobacterias/fisiología , Modelos Moleculares , Fitocromo/química , Fitocromo/metabolismo , Conformación Proteica , Luz , Optogenética , Relación Estructura-Actividad , Rayos UltravioletaRESUMEN
Biosyntheses of chlorophyll and heme in oxygenic phototrophs share a common trunk pathway that diverges with insertion of magnesium or iron into the last common intermediate, protoporphyrin IX. Since both tetrapyrroles are pro-oxidants, it is essential that their metabolism is tightly regulated. Here, we establish that heme-derived linear tetrapyrroles (bilins) function to stimulate the enzymatic activity of magnesium chelatase (MgCh) via their interaction with GENOMES UNCOUPLED 4 (GUN4) in the model green alga Chlamydomonas reinhardtii A key tetrapyrrole-binding component of MgCh found in all oxygenic photosynthetic species, CrGUN4, also stabilizes the bilin-dependent accumulation of protoporphyrin IX-binding CrCHLH1 subunit of MgCh in light-grown C. reinhardtii cells by preventing its photooxidative inactivation. Exogenous application of biliverdin IXα reverses the loss of CrCHLH1 in the bilin-deficient heme oxygenase (hmox1) mutant, but not in the gun4 mutant. We propose that these dual regulatory roles of GUN4:bilin complexes are responsible for the retention of bilin biosynthesis in all photosynthetic eukaryotes, which sustains chlorophyll biosynthesis in an illuminated oxic environment.
Asunto(s)
Pigmentos Biliares/fisiología , Chlamydomonas reinhardtii/metabolismo , Clorofila/biosíntesis , Péptidos y Proteínas de Señalización Intracelular/fisiología , Cianobacterias/metabolismo , Hemo Oxigenasa (Desciclizante) , Péptidos y Proteínas de Señalización Intracelular/química , Liasas/metabolismo , Protoporfirinas/químicaRESUMEN
Cyanobacteriochromes (CBCRs) are photoswitchable linear tetrapyrrole (bilin)-based light sensors in the phytochrome superfamily with a broad spectral range from the near UV through the far red (330 to 760 nm). The recent discovery of far-red absorbing CBCRs (frCBCRs) has garnered considerable interest from the optogenetic and imaging communities because of the deep penetrance of far-red light into mammalian tissue and the small size of the CBCR protein scaffold. The present studies were undertaken to determine the structural basis for far-red absorption by JSC1_58120g3, a frCBCR from the thermophilic cyanobacterium Leptolyngbya sp. JSC-1 that is a representative member of a phylogenetically distinct class. Unlike most CBCRs that bind phycocyanobilin (PCB), a phycobilin naturally occurring in cyanobacteria and only a few eukaryotic phototrophs, JSC1_58120g3's far-red absorption arises from incorporation of the PCB biosynthetic intermediate 181,182-dihydrobiliverdin (181,182-DHBV) rather than the more reduced and more abundant PCB. JSC1_58120g3 can also yield a far-red-absorbing adduct with the more widespread linear tetrapyrrole biliverdin IXα (BV), thus circumventing the need to coproduce or supplement optogenetic cell lines with PCB. Using high-resolution X-ray crystal structures of 181,182-DHBV and BV adducts of JSC1_58120g3 along with structure-guided mutagenesis, we have defined residues critical for its verdin-binding preference and far-red absorption. Far-red sensing and verdin incorporation make this frCBCR lineage an attractive template for developing robust optogenetic and imaging reagents for deep tissue applications.
Asunto(s)
Ficobilinas/metabolismo , Fitocromo/genética , Porfirinas/genética , Proteínas Bacterianas/metabolismo , Biliverdina/química , Cianobacterias/genética , Cianobacterias/metabolismo , Luz , Células Fotorreceptoras/metabolismo , Fotorreceptores Microbianos/química , Ficobilinas/genética , Ficocianina/genética , Ficocianina/metabolismo , Fitocromo/metabolismo , Porfirinas/metabolismoRESUMEN
Cyanobacteriochromes (CBCRs) are small, bistable linear tetrapyrrole (bilin)-binding light sensors which are typically found as modular components in multidomain cyanobacterial signaling proteins. The CBCR family has been categorized into many lineages that roughly correlate with their spectral diversity, but CBCRs possessing a conserved DXCF motif are found in multiple lineages. DXCF CBCRs typically possess two conserved Cys residues: a first Cys that remains ligated to the bilin chromophore and a second Cys found in the DXCF motif. The second Cys often forms a second thioether linkage, providing a mechanism to sense blue and violet light. DXCF CBCRs have been described with blue/green, blue/orange, blue/teal, and green/teal photocycles, and the molecular basis for some of this spectral diversity has been well established. We here characterize AM1_1499g1, an atypical DXCF CBCR that lacks the second cysteine residue and exhibits an orange/green photocycle. Based on prior studies of CBCR spectral tuning, we have successfully engineered seven AM1_1499g1 variants that exhibit robust yellow/teal, green/teal, blue/teal, orange/yellow, yellow/green, green/green, and blue/green photocycles. The remarkable spectral diversity generated by modification of a single CBCR provides a good template for multiplexing synthetic photobiology systems within the same cellular context, thereby bypassing the time-consuming empirical optimization process needed for multiple probes with different protein scaffolds.
Asunto(s)
Proteínas Bacterianas/metabolismo , Evolución Molecular , Luz , Fotorreceptores Microbianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/efectos de la radiación , Color , Cianobacterias/genética , Cianobacterias/metabolismo , Cianobacterias/efectos de la radiación , Mutagénesis Sitio-Dirigida , Nostoc/genética , Nostoc/metabolismo , Nostoc/efectos de la radiación , Fotobiología/métodos , Fotorreceptores Microbianos/efectos de la radiación , Biología Sintética/métodos , Tetrapirroles/metabolismoRESUMEN
Cyanobacteriochromes (CBCRs) are spectrally diverse photosensors from cyanobacteria distantly related to phytochromes that exploit photoisomerization of linear tetrapyrrole (bilin) chromophores to regulate associated signaling output domains. Unlike phytochromes, a single CBCR domain is sufficient for photoperception. CBCR domains that regulate the production or degradation of cyclic nucleotide second messengers are becoming increasingly well characterized. Cyclic di-guanosine monophosphate (c-di-GMP) is a widespread small-molecule regulator of bacterial motility, developmental transitions, and biofilm formation whose biosynthesis is regulated by CBCRs coupled to GGDEF (diguanylate cyclase) output domains. In this study, we compare the properties of diverse CBCR-GGDEF proteins with those of synthetic CBCR-GGDEF chimeras. Our investigation shows that natural diversity generates promising candidates for robust, broad spectrum optogenetic applications in live cells. Since light quality is constantly changing during plant development as upper leaves begin to shade lower leaves-affecting elongation growth, initiation of flowering, and responses to pathogens, these studies presage application of CBCR-GGDEF sensors to regulate orthogonal, c-di-GMP-regulated circuits in agronomically important plants for robust mitigation of such deleterious responses under natural growing conditions in the field.
Asunto(s)
Proteínas Bacterianas/metabolismo , Técnicas Biosensibles , Cianobacterias/enzimología , Proteínas de Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismoRESUMEN
Photoreceptors in the phytochrome superfamily use 15,16-photoisomerization of a linear tetrapyrrole (bilin) chromophore to photoconvert between two states with distinct spectral and biochemical properties. Canonical phytochromes include master regulators of plant growth and development in which light signals trigger interconversion between a red-absorbing 15Z dark-adapted state and a metastable, far-red-absorbing 15E photoproduct state. Distantly related cyanobacteriochromes (CBCRs) carry out a diverse range of photoregulatory functions in cyanobacteria and exhibit considerable spectral diversity. One widespread CBCR subfamily typically exhibits a red-absorbing 15Z dark-adapted state similar to that of phytochrome that gives rise to a distinct green-absorbing 15E photoproduct. This red/green CBCR subfamily also includes red-inactive examples that fail to undergo photoconversion, providing an opportunity to study protein-chromophore interactions that either promote photoisomerization or block it. In this work, we identified a conserved lineage of red-inactive CBCRs. This enabled us to identify three substitutions sufficient to block photoisomerization in photoactive red/green CBCRs. The resulting red-inactive variants faithfully replicated the fluorescence and circular dichroism properties of naturally occurring examples. Converse substitutions restored photoconversion in naturally red-inactive CBCRs. This work thus identifies protein-chromophore interactions that control the fate of the excited-state population in red/green cyanobacteriochromes.
Asunto(s)
Cianobacterias , Fotorreceptores Microbianos , Fitocromo , Proteínas Bacterianas/química , Cianobacterias/química , Fotorreceptores Microbianos/química , Fitocromo/químicaRESUMEN
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that exhibit photochromism between two states: a thermally stable dark-adapted state and a metastable light-adapted state with bound linear tetrapyrrole (bilin) chromophores possessing 15Z and 15E configurations, respectively. The photodynamics of canonical red/green CBCRs have been extensively studied; however, the time scales of their excited-state lifetimes and subsequent ground-state evolution rates widely differ and, at present, remain difficult to predict. Here, we compare the photodynamics of two closely related red/green CBCRs that have substantial sequence identity (â¼68%) and similar chromophore environments: AnPixJg2 from Anabaena sp. PCC 7120 and NpR6012g4 from Nostoc punctiforme. Using broadband transient absorption spectroscopy on the primary (125 fs to 7 ns) and secondary (7 ns to 10 ms) time scales together with global analysis modeling, our studies revealed that AnPixJg2 and NpR6012g4 have comparable quantum yields for initiating the forward (15ZPr â 15EPg) and reverse (15EPg â 15ZPr) reactions, which proceed through monotonic and nonmonotonic mechanisms, respectively. In addition to small discrepancies in the kinetics, the secondary reverse dynamics resolved unique features for each domain: intermediate shunts in NpR6012g4 and a Meta-Gf intermediate red-shifted from the 15ZPr photoproduct in AnPixJg2. Overall, this study supports the conclusion that sequence similarity is a useful criterion for predicting pathways of the light-induced evolution and quantum yield of generating primary intermediate Φp within subfamilies of CBCRs, but more studies are still needed to develop a comprehensive molecular level understanding of these processes.
Asunto(s)
Anabaena/química , Proteínas Bacterianas/química , Luz , Nostoc/químicaRESUMEN
The atypical trichromatic cyanobacterial phytochrome NpTP1 from Nostoc punctiforme ATCC 29133 is a linear tetrapyrrole (bilin)-binding photoreceptor protein that possesses tandem-cysteine residues responsible for shifting its light-sensing maximum to the violet spectral region. Using bioinformatics and phylogenetic analyses, here we established that tandem-cysteine cyanobacterial phytochromes (TCCPs) compose a well-supported monophyletic phytochrome lineage distinct from prototypical red/far-red cyanobacterial phytochromes. To investigate the light-sensing diversity of this family, we compared the spectroscopic properties of NpTP1 (here renamed NpTCCP) with those of three phylogenetically diverged TCCPs identified in the draft genomes of Tolypothrix sp. PCC7910, Scytonema sp. PCC10023, and Gloeocapsa sp. PCC7513. Recombinant photosensory core modules of ToTCCP, ScTCCP, and GlTCCP exhibited violet-blue-absorbing dark-states consistent with dual thioether-linked phycocyanobilin (PCB) chromophores. Photoexcitation generated singly-linked photoproduct mixtures with variable ratios of yellow-orange and red-absorbing species. The photoproduct ratio was strongly influenced by pH and by mutagenesis of TCCP- and phytochrome-specific signature residues. Our experiments support the conclusion that both photoproduct species possess protonated 15E bilin chromophores, but differ in the ionization state of the noncanonical "second" cysteine sulfhydryl group. We found that the ionization state of this and other residues influences subsequent conformational change and downstream signal transmission. We also show that tandem-cysteine phytochromes present in eukaryotes possess similar amino acid substitutions within their chromophore-binding pocket, which tune their spectral properties in an analogous fashion. Taken together, our findings provide a roadmap for tailoring the wavelength specificity of plant phytochromes to optimize plant performance in diverse natural and artificial light environments.
Asunto(s)
Proteínas Bacterianas/química , Cianobacterias/química , Fotorreceptores Microbianos/química , Fitocromo/química , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Cianobacterias/genética , Mutación Missense , Fotorreceptores Microbianos/genética , Fitocromo/genéticaRESUMEN
Phytochrome photoreceptors control plant growth, development, and the shade avoidance response that limits crop yield in high-density agricultural plantings. Cyanobacteriochromes (CBCRs) are distantly related photosensory proteins that control cyanobacterial metabolism and behavior in response to light. Photoreceptors in both families reversibly photoconvert between two photostates via photoisomerization of linear tetrapyrrole (bilin) chromophores. Spectroscopic and biochemical studies have demonstrated heterogeneity in both photostates, but the structural basis for such heterogeneity remains unclear. We report solution NMR structures for both photostates of the red/green CBCR NpR6012g4 from Nostoc punctiforme In addition to identifying structural changes accompanying photoconversion, these structures reveal structural heterogeneity for residues Trp655 and Asp657 in the red-absorbing NpR6012g4 dark state, yielding two distinct environments for the phycocyanobilin chromophore. We use site-directed mutagenesis and fluorescence and absorbance spectroscopy to assign an orange-absorbing population in the NpR6012g4 dark state to the minority configuration for Asp657. This population does not undergo full, productive photoconversion, as shown by time-resolved spectroscopy and absorption spectroscopy at cryogenic temperature. Our studies thus elucidate the spectral and photochemical consequences of structural heterogeneity in a member of the phytochrome superfamily, insights that should inform efforts to improve photochemical or fluorescence quantum yields in the phytochrome superfamily.
Asunto(s)
Proteínas Bacterianas/química , Nostoc/química , Fitocromo/química , Proteínas Bacterianas/genética , Mutagénesis Sitio-Dirigida , Nostoc/genética , Fitocromo/genética , Dominios ProteicosRESUMEN
Many cyanobacteria, which use light as an energy source via photosynthesis, have evolved the ability to guide their movement toward or away from a light source. This process, termed "phototaxis," enables organisms to localize in optimal light environments for improved growth and fitness. Mechanisms of phototaxis have been studied in the coccoid cyanobacterium Synechocystis sp. strain PCC 6803, but the rod-shaped Synechococcus elongatus PCC 7942, studied for circadian rhythms and metabolic engineering, has no phototactic motility. In this study we report a recent environmental isolate of S. elongatus, the strain UTEX 3055, whose genome is 98.5% identical to that of PCC 7942 but which is motile and phototactic. A six-gene operon encoding chemotaxis-like proteins was confirmed to be involved in phototaxis. Environmental light signals are perceived by a cyanobacteriochrome, PixJSe (Synpcc7942_0858), which carries five GAF domains that are responsive to blue/green light and resemble those of PixJ from Synechocystis Plate-based phototaxis assays indicate that UTEX 3055 uses PixJSe to sense blue and green light. Mutation of conserved functional cysteine residues in different GAF domains indicates that PixJSe controls both positive and negative phototaxis, in contrast to the multiple proteins that are employed for implementing bidirectional phototaxis in Synechocystis.
Asunto(s)
Fotorreceptores Microbianos/metabolismo , Fototaxis/fisiología , Synechococcus/metabolismo , Secuencia de Aminoácidos/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Cianobacterias/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Fotorreceptores Microbianos/química , Synechococcus/fisiología , Synechocystis/metabolismoRESUMEN
In this report, we compare the femtosecond to nanosecond primary reverse photodynamics (15EPg â 15ZPr) of eight tetrapyrrole binding photoswitching cyanobacteriochromes in the canonical red/green family from the cyanobacterium Nostoc punctiforme. Three characteristic classes were identified on the basis of the diversity of excited-state and ground-state properties, including the lifetime, photocycle initiation quantum yield, photointermediate stability, spectra, and temporal properties. We observed a correlation between the excited-state lifetime and peak wavelength of the electronic absorption spectrum with higher-energy-absorbing representatives exhibiting both faster excited-state decay times and higher photoisomerization quantum yields. The latter was attributed to both an increased number of structural restraints and differences in H-bonding networks that facilitate photoisomerization. All three classes exhibited primary Lumi-Go intermediates, with class II and III representatives evolving to a secondary Meta-G photointermediate. Class II Meta-GR intermediates were orange absorbing, whereas class III Meta-G had structurally relaxed, red-absorbing chromophores that resemble their dark-adapted 15ZPr states. Differences in the reverse and forward reaction mechanisms are discussed within the context of structural constraints.
Asunto(s)
Proteínas Bacterianas/metabolismo , Nostoc/metabolismo , Cinética , Procesos Fotoquímicos , Fotorreceptores Microbianos/metabolismoRESUMEN
Canonical plant phytochromes are master regulators of photomorphogenesis and the shade avoidance response. They are also part of a widespread superfamily of photoreceptors with diverse spectral and biochemical properties. Plant phytochromes belong to a clade including other phytochromes from glaucophyte, prasinophyte, and streptophyte algae (all members of the Archaeplastida) and those from cryptophyte algae. This is consistent with recent analyses supporting the existence of an AC (Archaeplastida + Cryptista) clade. AC phytochromes have been proposed to arise from ancestral cyanobacterial genes via endosymbiotic gene transfer (EGT), but most recent studies instead support multiple horizontal gene transfer (HGT) events to generate extant eukaryotic phytochromes. In principle, this scenario would be compared to the emerging understanding of early events in eukaryotic evolution to generate a coherent picture. Unfortunately, there is currently a major discrepancy between the evolution of phytochromes and the evolution of eukaryotes; phytochrome evolution is thus not a solved problem. We therefore examine phytochrome evolution in a broader context. Within this context, we can identify three important themes in phytochrome evolution: deletion, duplication, and diversification. These themes drive phytochrome evolution as organisms evolve in response to environmental challenges.
Asunto(s)
Evolución Biológica , Cianobacterias/genética , Genes de Plantas , Filogenia , Fitocromo/genética , Fenómenos Fisiológicos de las Plantas/genética , Plantas/genética , Duplicación de Gen , Transferencia de Gen Horizontal , Fitocromo/metabolismo , Plantas/metabolismo , Eliminación de Secuencia , SimbiosisRESUMEN
In land plants, linear tetrapyrrole (bilin)-based phytochrome photosensors optimize photosynthetic light capture by mediating massive reprogramming of gene expression. But, surprisingly, many green algal genomes lack phytochrome genes. Studies of the heme oxygenase mutant (hmox1) of the green alga Chlamydomonas reinhardtii suggest that bilin biosynthesis in plastids is essential for proper regulation of a nuclear gene network implicated in oxygen detoxification during dark-to-light transitions. hmox1 cannot grow photoautotrophically and photoacclimates poorly to increased illumination. We show that these phenotypes are due to reduced accumulation of photosystem I (PSI) reaction centers, the PSI electron acceptors 5'-monohydroxyphylloquinone and phylloquinone, and the loss of PSI and photosystem II antennae complexes during photoacclimation. The hmox1 mutant resembles chlorophyll biosynthesis mutants phenotypically, but can be rescued by exogenous biliverdin IXα, the bilin produced by HMOX1. This rescue is independent of photosynthesis and is strongly dependent on blue light. RNA-seq comparisons of hmox1, genetically complemented hmox1, and chemically rescued hmox1 reveal that tetrapyrrole biosynthesis and known photoreceptor and photosynthesis-related genes are not impacted in the hmox1 mutant at the transcript level. We propose that a bilin-based, blue-light-sensing system within plastids evolved together with a bilin-based retrograde signaling pathway to ensure that a robust photosynthetic apparatus is sustained in light-grown Chlamydomonas.
Asunto(s)
Pigmentos Biliares/biosíntesis , Chlamydomonas reinhardtii/metabolismo , Hemo-Oxigenasa 1/metabolismo , Proteínas de Plantas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efectos de la radiación , Cloroplastos/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Hemo-Oxigenasa 1/genética , Luz , Mutación , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de Plantas/genética , Transducción de Señal/genéticaRESUMEN
Cyanobacteriochromes (CBCRs) make up a diverse family of cyanobacterial photoreceptors distantly related to the phytochrome photoreceptors of land plants. At least two lineages of CBCRs have reacquired red-absorbing dark states similar to the phytochrome Pr resting state but are coupled to green-absorbing light-adapted states rather than the canonical far-red-absorbing light-adapted state. One such lineage includes the canonical red/green (R/G) CBCRs that includes AnPixJg2 (UniProtKB Q8YXY7 ) and NpR6012g4 (UniProtKB B2IU14 ) that have been extensively characterized. Here we examine the forward Pr photodynamics of NpR3784 (UniProtKB B2J457 ), a representative member of the second R/G CBCR subfamily. Using broadband transient absorption pump-probe spectroscopy, we characterize both primary (100 fs to 10 ns) and secondary (10 ns to 1 ms) forward (Pr â Pg) photodynamics and compare the results to temperature-jump cryokinetics measurements. Our studies show that primary isomerization dynamics occur on an â¼10 ps timescale, yet remarkably, the red-shifted primary Lumi-Rf photoproduct found in all photoactive canonical R/G CBCRs examined to date is extremely short-lived in NpR3784. These results demonstrate that differences in reaction pathways reflect the evolutionary history of R/G CBCRs despite the convergent evolution of their photocycle end products.
Asunto(s)
Proteínas Bacterianas/metabolismo , Luz , Nostoc/metabolismo , Fotorreceptores Microbianos/metabolismo , Cinética , Nostoc/efectos de la radiación , Procesos Fotoquímicos/efectos de la radiación , Fotorreceptores Microbianos/efectos de la radiación , EspectrofotometríaRESUMEN
In the companion paper (10.1021/acs.biochem.8b01274), we examined the forward Pr photodynamics of NpR3784 (UniProtKB B2J457 ), a representative member of a noncanonical red/green (R/G) cyanobacteriochrome (CBCR) subfamily. Here the reverse Pg â Pr photodynamics of NpR3784 was studied by broadband transient absorption pump-probe spectroscopy. Primary (100 fs to 10 ns) and secondary (10 ns to 1 ms) photodynamics were characterized over nine decades of time, which also were complemented with temperature-jump cryokinetics measurements. In contrast with canonical R/G CBCRs, the NpR3784 reverse photoconversion yielded two spectrally distinct primary photoproducts, Lumi-Go and Lumi-Gr, which decay on different time scales. The two primary photoproducts of NpR3784 equilibrate on the 40 ns time scale and subsequently propagate as a single intermediate population into Pr. Such heterogeneity could arise from differences in the direction of D-ring rotation, in chromophore protonation or hydrogen bonding, or in the mobility of protein residues or of solvent water nearby the chromophore or some combination therein. We conclude that the atypical photodynamics of NpR3784 reflects chromophore-protein interactions that differ from those present in the canonical R/G CBCR family.